tutte polynomial
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Tarig Abdelgadir ◽  
Anton Mellit ◽  
Fernando Rodriguez Villegas

For a quiver $Q$ with underlying graph $\Gamma$ , we take $ {\mathcal {M}}$ an associated toric Nakajima quiver variety. In this article, we give a direct relation between a specialization of the Tutte polynomial of $\Gamma$ , the Kac polynomial of $Q$ and the Poincaré polynomial of $ {\mathcal {M}}$ . We do this by giving a cell decomposition of $ {\mathcal {M}}$ indexed by spanning trees of $\Gamma$ and ‘geometrizing’ the deletion and contraction operators on graphs. These relations have been previously established in Hausel–Sturmfels [6] and Crawley-Boevey–Van den Bergh [3], however the methods here are more hands-on.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ryan L. Mann

AbstractWe establish a classical heuristic algorithm for exactly computing quantum probability amplitudes. Our algorithm is based on mapping output probability amplitudes of quantum circuits to evaluations of the Tutte polynomial of graphic matroids. The algorithm evaluates the Tutte polynomial recursively using the deletion–contraction property while attempting to exploit structural properties of the matroid. We consider several variations of our algorithm and present experimental results comparing their performance on two classes of random quantum circuits. Further, we obtain an explicit form for Clifford circuit amplitudes in terms of matroid invariants and an alternative efficient classical algorithm for computing the output probability amplitudes of Clifford circuits.


2021 ◽  
pp. 7-16
Author(s):  
Adrian Tanasa

In this chapter we present some notions of graph theory that will be useful in the rest of the book. It is worth emphasizing that graph theorists and theoretical physicists adopt, unfortunately, different terminologies. We present here both terminologies, such that a sort of dictionary between these two communities can be established. We then extend the notion of graph to that of maps (or of ribbon graphs). Moreover, graph polynomials encoding these structures (the Tutte polynomial for graphs and the Bollobás–Riordan polynomial for ribbon graphs) are presented.


2021 ◽  
pp. 56-71
Author(s):  
Adrian Tanasa

In the first section of this chapter, we use Grassmann calculus, used in fermionic QFT, to give, first a reformulation of the Lingström–Gesse–Viennot lemma proof. We further show that this proof generalizes to graphs with cycles. We then use the same Grassmann calculus techniques to give new proofs of Stembridge's identities relating appropriate graph Pfaffians to sum over non-intersecting paths. The results presented here go further than the ones of Stembridge, because Grassmann algebra techniques naturally extend (without any cost!) to graphs with cycles. We thus obtain, instead of sums over non-intersecting paths, sums over non-intersecting paths and non-intersecting cycles. In the fifth section of the chapter, we give a generalization of these results. In the sixth section of this chapter we use Grassmann calculus to exhibit the relation between a multivariate version of Tutte polynomial and the Kirchhoff-Symanzik polynomials of the parametric representation of Feynman integrals, polynomials already introduced in Chapters 1 and Chapter 3.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
José Aliste-Prieto ◽  
Logan Crew ◽  
Sophie Spirkl ◽  
José Zamora

This paper has two main parts. First, we consider the Tutte symmetric function XB, a generalization of the chromatic symmetric function. We introduce a vertex-weighted version of XB and show that this function admits a deletion-contraction relation. We also demonstrate that the vertex-weighted XB admits spanning-tree and spanning-forest expansions generalizing those of the Tutte polynomial by connecting XB to other graph functions. Second, we give several methods for constructing nonisomorphic graphs with equal chromatic and Tutte symmetric functions, and use them to provide specific examples.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdulgani Şahin

AbstractIn this study, we introduce the relationship between the Tutte polynomials and dichromatic polynomials of (2,n)-torus knots. For this aim, firstly we obtain the signed graph of a (2,n)-torus knot, marked with {+} signs, via the regular diagram of its. Whereupon, we compute the Tutte polynomial for this graph and find a generalization through these calculations. Finally we obtain dichromatic polynomial lying under the unmarked states of the signed graph of the (2,n)-torus knots by the generalization.


Sign in / Sign up

Export Citation Format

Share Document