primitive root
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Sankar Sitaraman

E. Artin conjectured that any integer $a > 1$ which is not a perfect square is a primitive root modulo $p$ for infinitely many primes $ p.$ Let $f_a(p)$ be the multiplicative order of the non-square integer $a$ modulo the prime $p.$ M. R. Murty and S. Srinivasan \cite{Murty-Srinivasan} showed that if $\displaystyle \sum_{p < x} \frac 1 {f_a(p)} = O(x^{1/4})$ then Artin's conjecture is true for $a.$ We relate the Murty-Srinivasan condition to sums involving the cyclotomic periods from the subfields of $\mathbb Q(e^{2\pi i /p})$ corresponding to the subgroups $<a> \subseteq \mathbb F_p^*.$


Author(s):  
Bo Chen

In this paper, we give an explicit upper bound on [Formula: see text], the least primitive root modulo [Formula: see text]. Since a primitive root modulo [Formula: see text] is not primitive modulo [Formula: see text] if and only if it belongs to the set of integers less than [Formula: see text] which are [Formula: see text]th power residues modulo [Formula: see text], we seek the bounds for [Formula: see text] and [Formula: see text] to find [Formula: see text] which satisfies [Formula: see text], where, [Formula: see text] denotes the number of primitive roots modulo [Formula: see text] not exceeding [Formula: see text], and [Formula: see text] denotes the number of [Formula: see text]th powers modulo [Formula: see text] not exceeding [Formula: see text]. The method we mainly use is to estimate the character sums contained in the expressions of the [Formula: see text] and [Formula: see text] above. Finally, we show that [Formula: see text] for all primes [Formula: see text]. This improves the recent result of Kerr et al.


Author(s):  
HAI-LIANG WU ◽  
YUE-FENG SHE

Abstract Let $p=3n+1$ be a prime with $n\in \mathbb {N}=\{0,1,2,\ldots \}$ and let $g\in \mathbb {Z}$ be a primitive root modulo p. Let $0<a_1<\cdots <a_n<p$ be all the cubic residues modulo p in the interval $(0,p)$ . Then clearly the sequence $a_1 \bmod p,\, a_2 \bmod p,\ldots , a_n \bmod p$ is a permutation of the sequence $g^3 \bmod p,\,g^6 \bmod p,\ldots , g^{3n} \bmod p$ . We determine the sign of this permutation.


Author(s):  
Vladimir Anatolevich Edemskiy

The article presents the analysis of the linear complexity of periodic q-ary sequences when changing k of their terms per period. Sequences are formed on the basis of new generalized cyclotomy modulo equal to the degree of an odd prime. There has been obtained a recurrence relation and an estimate of the change in the linear complexity of these sequences, where q is a primitive root modulo equal to the period of the sequence. It can be inferred from the results that the linear complexity of these sequences does not sign ificantly decrease when k is less than half the period. The study summarizes the results for the binary case obtained earlier.


Author(s):  
V. Keerthi ◽  
T. Anuradha

Now a days exploring and analyzing or mining data in various ways give insights into future for invention and plays a critical role in decision making. For accurate analytical assertion of data, accurate results is essential. So hiding data and at the same time preserving data privacy is necessary to protect externals from attacks. An successful process for sharing sensitive information for data processing, validation and publication should then be deducted. In this paper Polynomial Based Encryption Secret Sharing Scheme (PBESSS) for Multi-Party mechanism is proposed that allows multiple parties to exchange secret data between them at the same time secret data is encrypted so as to protect from untrusted parties. Each party will have stronger protection by selected own polynomial with primitive root number ‘generator’ and the secret data will be in cryptic form and it can be found by each party after final computation of polynomials. This multi-party mechanism can be applied to federated cloud for computation securely.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Maciej Mroczkowski

AbstractWe consider arrow diagrams of links in $$S^3$$ S 3 and define k-moves on such diagrams, for any $$k\in \mathbb {N}$$ k ∈ N . We study the equivalence classes of links in $$S^3$$ S 3 up to k-moves. For $$k=2$$ k = 2 , we show that any two knots are equivalent, whereas it is not true for links. We show that the Jones polynomial at a k-th primitive root of unity is unchanged by a k-move, when k is odd. It is multiplied by $$-1$$ - 1 , when k is even. It follows that, for any $$k\ge 5$$ k ≥ 5 , there are infinitely many classes of knots modulo k-moves. We use these results to study the Hopf crossing number. In particular, we show that it is unbounded for some families of knots. We also interpret k-moves as some identifications between links in different lens spaces $$L_{p,1}$$ L p , 1 .


2020 ◽  
Vol 215 ◽  
pp. 20-27
Author(s):  
Bryce Kerr ◽  
Kevin J. McGown ◽  
Tim Trudgian

Sign in / Sign up

Export Citation Format

Share Document