Stochastic heat equation with piecewise constant coefficients and generalized fractional type noise

2021 ◽  
Vol 104 ◽  
pp. 123-144
Author(s):  
M. Zili ◽  
E. Zougar

2020 ◽  
Vol 21 (01) ◽  
pp. 2150002
Author(s):  
Yuliya Mishura ◽  
Kostiantyn Ralchenko ◽  
Mounir Zili ◽  
Eya Zougar

We introduce a fractional stochastic heat equation with second-order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by an infinite-dimensional fractional Brownian motion. We characterize the fundamental solution of its deterministic part, and prove the existence and the uniqueness of its solution.





Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.







2002 ◽  
Vol 15 (1) ◽  
pp. 1-21
Author(s):  
G. George Yin ◽  
Jiongmin Yong

This work is concerned with a class of hybrid LQG (linear quadratic Gaussian) regulator problems modulated by continuous-time Markov chains. In contrast to the traditional LQG models, the systems have both continuous dynamics and discrete events. In lieu of a model with constant coefficients, these coefficients vary with time and exhibit piecewise constant behavior. At any time t, the system follows a stochastic differential equation in which the coefficients take one of the m possible configurations where m is usually large. The system may jump to any of the possible configurations at random times. Further, the control weight in the cost functional is allowed to be indefinite. To reduce the complexity, the Markov chain is formulated as singularly perturbed with a small parameter. Our effort is devoted to solving the limit problem when the small parameter tends to zero via the framework of weak convergence. Although the limit system is still modulated by a Markov chain, it has a much smaller state space and thus, much reduced complexity.



2017 ◽  
Vol 17 (04) ◽  
pp. 1750025 ◽  
Author(s):  
Yumeng Li ◽  
Ran Wang ◽  
Nian Yao ◽  
Shuguang Zhang

In this paper, we study the Moderate Deviation Principle for a perturbed stochastic heat equation in the whole space [Formula: see text]. This equation is driven by a Gaussian noise, white in time and correlated in space, and the differential operator is a fractional derivative operator. The weak convergence method plays an important role.



Sign in / Sign up

Export Citation Format

Share Document