Rings of quotients of associative rings

Author(s):  
V. P. Elizarov
1968 ◽  
Vol 11 (3) ◽  
pp. 383-398
Author(s):  
Israel Kleiner

The concept of a rational extension of a Lie module is defined as in the associative case [1, pp. 81 and 79]. It then follows from [3, Theorem 2.3] that any Lie module possesses a maximal rational extension (a rational completion), unique up to isomorphism. If now L and K are Lie rings with L⊆ K, we call K a (Lie) ring of quotients of L if K, considered as a Lie module over L, is a rational extension of the Lie module LL. Although we do not know if for every Lie ring L its rational completion can be given a Lie ring structure extending that of L (as is the case for associative rings), this is so, in any case, for abelian Lie rings (Propositions 2 and 4).


2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2016 ◽  
Vol 26 (05) ◽  
pp. 985-1017
Author(s):  
Olga B. Finogenova

We study varieties of associative algebras over a finite field and varieties of associative rings satisfying semigroup or adjoint semigroup identities. We characterize these varieties in terms of “forbidden algebras” and discuss some corollaries of the characterizations.


1986 ◽  
Vol 28 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Victoria Gould

Several definitions of a semigroup of quotients have been proposed and studied by a number of authors. For a survey, the reader may consult Weinert's paper [8]. The motivation for many of these concepts comes from ring theory and the various notions of rings of quotients. We are concerned in this paper with an analogue of the classical ring of quotients, introduced by Fountain and Petrich in [3].


1990 ◽  
Vol 13 (4) ◽  
pp. 769-774
Author(s):  
Hamza A. S. Abujabal

In this paper we generalize some well-known commutativity theorems for associative rings as follows: LetRbe a lefts-unital ring. If there exist nonnegative integersm>1,k≥0, andn≥0such that for anyx,yinR,[xky−xnym,x]=0, thenRis commutative.


Sign in / Sign up

Export Citation Format

Share Document