Asymptotic behavior of the spectral function of the Schrödinger operator near a plane part of the boundary

Author(s):  
M. G. Gasymov ◽  
B. M. Levitan
Author(s):  
А.Б. Шабат ◽  
О.Ю. Веремеенко ◽  
М.Ш. Бадахов

Рассматривается оператор Шредингера на прямой с финитным потенциалом. Для ряда примеров δ-образных потенциалов установлена асимптотика комплексных полюсов коэффициента прохождения 1/a(k). Планируется использовать эти полюса для построения эффективных приближенных методов решения одномерной обратной задачи рассеяния.


In this paper we introduce symmetry considerations into our earlier work, which was concerned with geometric spectral properties of Schrödinger operators including the N -body operators of quantum mechanics. The point of emphasis is a function introduced by Shmuel Agmon which we have named the Agmon spectral function. We show that this function is symmetric for an N -body Schrödinger operator restricted to a subspace of prescribed symmetry. We then show how it can be used to obtain criteria for the finiteness and infiniteness of bound states of polyatomic systems.


Sign in / Sign up

Export Citation Format

Share Document