scholarly journals Coordination of Grp1 recruitment mechanisms by its phosphorylation

2020 ◽  
Vol 31 (25) ◽  
pp. 2816-2825
Author(s):  
Jian Li ◽  
David G. Lambright ◽  
Victor W. Hsu

Intracellular transport pathways are initiated by the recruitment of guanine nucleotide exchange factors (GEFs) that act on the ADP-Ribosylation Factor (ARF) family of small GTPases to membrane compartments. We have elucidated the complexity of recruitment mechanisms that need to be coordinated in localizing an ARF GEF for this process.

1998 ◽  
Vol 18 (12) ◽  
pp. 7444-7454 ◽  
Author(s):  
Gwo-Jen Day ◽  
Raymond D. Mosteller ◽  
Daniel Broek

ABSTRACT The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3–loop 7 [α3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and α3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and α3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated.


2006 ◽  
Vol 34 (5) ◽  
pp. 858-861 ◽  
Author(s):  
J.C. Stone

RasGRPs (guanine nucleotide releasing proteins) are a family of four GEFs (guanine nucleotide-exchange factors) (Ras GEFs) that positively regulate Ras and related small GTPases. RasGRP1 possesses a catalytic region consisting of a REM (Ras exchange motif) and a CDC25 (cell division cycle 25) domain. RasGRP1 also possesses a DAG (diacylglycerol)-binding C1 domain and a pair of EF hands that bind calcium. RasGRP1 is selectively expressed in lymphocytes as well as in some cells of the brain, kidney and skin. Functional analysis supports the hypothesis that RasGRP1 serves to couple TCR (T-cell receptor) stimulation and phospholipase C activation with Ras signalling. In B-cells, both RasGRP1 and RasGRP3 play a similar role downstream of the B-cell receptor. RasGRP2 acts on the Ras-related protein Rap and functions in platelet adhesion. RasGRP4 is expressed in mast cells and certain myeloid leukaemia cells. Membrane DAG regulates RasGRPs directly by recruitment to cellular membranes, as well as indirectly by protein kinase C-mediated phosphorylation. The properties of RasGRPs provide a novel view of Ras regulation in lymphocytes and explain several earlier observations. Many experimental results obtained with DAG analogues could be reviewed in light of these findings.


2012 ◽  
Vol 40 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Anne-Coline Laurent ◽  
Magali Breckler ◽  
Magali Berthouze ◽  
Frank Lezoualc'h

Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.


Sign in / Sign up

Export Citation Format

Share Document