protein traffic
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 12)

H-INDEX

43
(FIVE YEARS 2)

Author(s):  
Rachel E. Turn ◽  
Yihan Hu ◽  
Skylar I. Dewees ◽  
Narra Devi ◽  
Michael P. East ◽  
...  

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.


2021 ◽  
Author(s):  
Rachel E Turn ◽  
Yihan Hu ◽  
Skylar I Dewees ◽  
Narra Devi ◽  
Michael P East ◽  
...  

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon expression of activating mutants of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions. Thus, we believe that ELMOD1 and ELMOD3 perform multiple functions in cells, most prominently linked to ciliary biology and Golgi-ciliary traffic, and likely acting from more than one cellular location.


2021 ◽  
Author(s):  
Piyali Majumder ◽  
Daisy Edmison ◽  
Catherine Rodger ◽  
Evan Reid ◽  
Swetha Gowrishankar

The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function and transport via regulating export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome build-up are highly reminiscent of those observed in Alzheimer disease as well as in neurons modelling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4 deficient HSP.


2021 ◽  
Vol 35 (6) ◽  
Author(s):  
Carlos Anton‐Plagaro ◽  
Noelia Sanchez ◽  
Rosario Valle ◽  
Jose Miguel Mulet ◽  
Mara C. Duncan ◽  
...  

2021 ◽  
Vol 134 (3) ◽  
pp. jcs250670 ◽  
Author(s):  
Anthony Ravussin ◽  
Andreas Brech ◽  
Sharon A. Tooze ◽  
Harald Stenmark

ABSTRACTLate endosomes and lysosomes (endolysosomes) receive proteins and cargo from the secretory, endocytic and autophagic pathways. Although these pathways and the degradative processes of endolysosomes are well characterized, less is understood about protein traffic from these organelles. In this study, we demonstrate the direct involvement of the phosphatidylinositol 3-phosphate (PI3P)-binding SNX4 protein in membrane protein recycling from endolysosomes, and show that SNX4 is required for proper autophagic flux. We show that SNX4 mediates recycling of the lipid scramblase ATG9A, which drives expansion of nascent autophagosome membranes, from endolysosomes to early endosomes, from where ATG9A is recycled to the trans-Golgi network in a retromer-dependent manner. Upon siRNA-mediated depletion of SNX4 or the retromer component VPS35, we observed accumulation of ATG9A on endolysosomes and early endosomes, respectively. Moreover, starvation-induced autophagosome biogenesis and autophagic flux were inhibited when SNX4 was downregulated. We propose that proper ATG9A recycling by SNX4 sustains autophagy by preventing exhaustion of the available ATG9A pool.This article has an associated First Person interview with the first author of the paper.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emiko Kinoshita-Kikuta ◽  
Toshihiko Utsumi ◽  
Aya Miyazaki ◽  
Chiharu Tokumoto ◽  
Kyosuke Doi ◽  
...  

Abstract Protein N-myristoylation of Src-family kinases (SFKs) is a critical co-translational modification to anchor the enzymes in the plasma membrane. Phosphorylation of SFKs is also an essential modification for regulating their enzymatic activities. In this study, we used Phos-tag SDS-PAGE to investigate N-myristoylation-dependent phosphorylation of SFKs and their non-N-myristoylated G2A mutants. The serine-13 residue of Lyn (Lyn-S13) was shown to be N-myristoylation-dependently phosphorylated. Although there have been more than 40 reports of mass spectrometric studies on phosphorylation at Lyn-S13, the kinase responsible remained unclear. We succeeded in identifying casein kinase 1γ (CK1γ) as the kinase responsible for phosphorylation of Lyn-S13. In HEK293 cells co-expressing Lyn and CK1γ, the phosphorylation level of Lyn-S13 increased significantly. CK1γ is unique among the CK1 family (α, γ, δ, and ε) in carrying an S-palmitoylation site for membrane binding. Co-expression with the non-S-palmitoylated CK1γ mutant, which localized in the cytosol, gave no increase in the phosphorylation level at Lyn-S13. In HEK293 cells expressing the non-S-palmitoylated Lyn-C3A mutant, on the other hand, the Lyn-C3A mutant was phosphorylated at Lyn-S13, and the mutant remained at the Golgi. These results showed that S-palmitoylated CK1γ can phosphorylate S13 of N-myristoylated Lyn at the Golgi during intracellular protein traffic.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jason C Casler ◽  
Benjamin S Glick

Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results suggest that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.


2020 ◽  
Author(s):  
Anthony Ravussin ◽  
Sharon A. Tooze ◽  
Harald Stenmark

AbstractLate endosomes and lysosomes (endolysosomes) receive proteins and cargo from the secretory, endocytic and autophagic pathways. Whereas these pathways and the degradative processes of endolysosomes are well characterized, less is understood about protein traffic from these organelles. In this study, we demonstrate the direct involvement of the phosphatidylinositol 3-phosphate (PI3P) binding SNX4 protein in membrane protein recycling from endolysosomes, and show that SNX4 is required for proper autophagic flux. We show that SNX4 mediates recycling of the transmembrane autophagy machinery protein ATG9A from endolysosomes to early endosomes, from where ATG9A is recycled to the trans-Golgi network in a retromer-dependent manner. Upon siRNA-mediated depletion of SNX4 or the retromer component VPS35, we observed accumulation of ATG9A on endolysosomes and early endosomes, respectively. Moreover, starvation-induced autophagosome biogenesis and autophagic flux were inhibited when SNX4 was downregulated. Altogether, we propose that proper ATG9A recycling by SNX4 sustains autophagy by preventing exhaustion of the available ATG9A pool.


2020 ◽  
Author(s):  
Jason C. Casler ◽  
Benjamin S. Glick

AbstractThe yeast Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results imply that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.


Sign in / Sign up

Export Citation Format

Share Document