nucleotide exchange
Recently Published Documents


TOTAL DOCUMENTS

2932
(FIVE YEARS 490)

H-INDEX

140
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Mehran Dehghanian ◽  
Ghafour Yarahmadi ◽  
Reyhaneh Sadat Sandoghsaz ◽  
Farimah Shamsi ◽  
Ali Khodadadian ◽  
...  

Abstract Objective: Endometriosis is a female reproductive system disease in which endometrial tissue are found in other women organs. Various factors are effective in the development of endometriosis and due to the interaction of genetics and environmental factors, this disease is a multifactorial disease. MAPK/ERK and PI3K/Akt/mTOR pathways are activated by growth factors and steroid hormones and known as two important pathways involved in the processes of growth, proliferation and survival of endometriosis cells. Raps, monomeric GTPase of Ras family, are able to activate these pathways independently of Ras. The goal of our study was to evaluated the expression level of Rap1GAP and Epac1 gene, as two important RapGAPs (GTPase-activating proteins) and RapGEFs (guanine nucleotide exchange factors) respectively, in endometriosis tissues and normal endometrium tissues.Materials and Methods: In this study, 15 samples of women without signs of endometriosis were taken as control samples, 15 ectopic and 15 eutopic samples were taken from women with endometriosis using laparoscopic surgery. The expression of Epac1 and Rap1GAP genes was investigated by Real-time PCR technique and results were analysis by One-Way ANOVA test.Results: Epac1 upregulated significantly in ectopic tissues compared to eutopic and control tissues (Their P-value were <0.0001). Rap1GAP expression was lower in ectopic tissues compared to control samples (P-value was 0.003) and eutopic tissues (P-value was 0.001).Conclusion: Based on these results, it may be concluded that changes in the expression of the Rap1GAP and Epca1 genes may play role in the pathways involved in the pathogenesis, displacement, and migration of endometriosis cells.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

ARF small GTPases are molecular switches acting in intracellular trafficking. Their cycles of activity are controlled by regulators, ARF Guanine nucleotide Exchange Factors (ARF-GEFs) and ARF GTPase Activating Proteins (ARF-GAPs). The ARF-GEF GNOM (GN) and the ARF-GAP VAN3 share a prominent function in auxin-mediated developmental patterning, but the ARFs which they might control were not identified. We conducted a loss-of-function and localization-based screening of the ARF/ARF-LIKE gene family in Arabidopsis thaliana with the primary aim of identifying functional partners of GN and VAN3, while extending the limited understanding of this gene group as a whole. We identified a function of ARLA1 in branching angle control. Mutants lacking the variably localized ARLB1, ARFB1, ARFC1, ARFD1, and ARF3, even in high order combinations, do not exhibit any evident phenotypes. Loss of function arfa1 phenotypes support a major role of ARFA1 in growth and development overall, but patterning defects typical to gn loss of function are not found. ARFA1 are not localized at the plasma membrane, where GN and VAN3 carry out developmental patterning function according to current models. Taken together, putative ARF partners of GN and VAN3 in developmental patterning cannot be conclusively identified.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study redefine the current notions of GN function. We show that GN, but not GNL1, localizes to the PM at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that PM is the major place of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations. A study of GN-GNL1 chimeric ARF-GEFs indicate that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps towards the elucidation of the mechanism underlying unique cellular and development functions of GN.


2022 ◽  
Author(s):  
Frank Hidalgo ◽  
Laura M Nocka ◽  
Neel H Shah ◽  
Kent Gorday ◽  
Naomi R Latorraca ◽  
...  

Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H?Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H?Ras in mammalian Ba/F3 cells correlate well with results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase?activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g., at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen?deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with the destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras – and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shane P. Comer

Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 255
Author(s):  
Hyo-Jin Kim ◽  
Ki-Jun Ryu ◽  
Minju Kim ◽  
Taeyoung Kim ◽  
Seon-Hee Kim ◽  
...  

Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Zhang ◽  
Zuojia Liu ◽  
Wenjing Zhao ◽  
Xunzhe Yin ◽  
Xiliang Zheng ◽  
...  

HRas-GTP has a transient intermediate state with a “non-signaling open conformation” in GTP hydrolysis and nucleotide exchange. Due to the same hydrolysis process and the structural homology, it can be speculated that the active KRas adopts the same characteristics with the “open conformation.” This implies that agents locking this “open conformation” may theoretically block KRas-dependent signaling. Applying our specificity-affinity drug screening approach, NSC290956 was chosen by high affinity and specificity interaction with the “open conformation” structure HRasG60A-GppNp. In mutant KRas-driven non-small-cell lung cancer (NSCLC) model system, NSC290956 effectively suppresses the KRas-GTP state and gives pharmacological KRas inhibition with concomitant blockages of both the MAPK-ERK and AKT-mTOR pathways. The dual inhibitory effects lead to the metabolic phenotype switching from glycolysis to mitochondrial metabolism, which promotes the cancer cell death. In the xenograft model, NSC290956 significantly reduces H358 tumor growth in nude mice by mechanisms similar to those observed in the cells. Our work indicates that NSC290956 can be a promising agent for the mutant KRas-driven NSCLC therapy.


2022 ◽  
Author(s):  
Joseph P Campanale ◽  
James A Mondo ◽  
Denise J Montell

Apicobasal polarity is a defining characteristic of epithelial cells and its disruption is a cancer hallmark. Distinct apical and basolateral protein modules antagonize each other to establish separate membrane domains. These modules interact with dozens of potential effector proteins. Here we describe polarity protein localization and function within a migrating epithelial cell cluster and identify a functionally significant effector protein. In Drosophila egg chambers, border cells delaminate from the follicular epithelium and migrate collectively. We report that the basolateral protein Scribble is required for border cell cluster cohesion and migration. The basolateral module localizes the Rac guanine nucleotide exchange factor Cdep to membranes, and Cdep knockdown phenocopies Scribble cluster cohesion defects. Remarkably, membrane targeting of Cdep is sufficient to partially suppress multiple Scribble phenotypes. We describe specialized basolateral protrusions that promote cluster cohesion. Scribble restricts these protrusions from encroaching onto the apical domain. Thus, a major function of the basolateral module is to localize Cdep, promoting specialized protrusions, cluster cohesion, and collective migration.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mengqi Li ◽  
Qingzheng Jiao ◽  
Wenqiang Xin ◽  
Shulin Niu ◽  
Mingming Liu ◽  
...  

Atherosclerosis is a leading cause of cardiovascular disease, and atherosclerotic cardiovascular disease accounts for one-third of global deaths. However, the mechanism of atherosclerosis is not fully understood. It is well-known that the Rho GTPase family, especially Rho A, plays a vital role in the development and progression of arteriosclerosis. Rho guanine nucleotide exchange factors (Rho GEFs), which act upstream of Rho GTPases, are also involved in the atheromatous pathological process. Despite some research on the role of Rho GEFS in the regulation of atherosclerosis, the number of studies is small relative to studies on the essential function of Rho GEFs. Some studies have preliminarily revealed Rho GEF regulation of atherosclerosis by experiments in vivo and in vitro. Herein, we review the advances in research on the relationship and interaction between Rho GEFs and atheroma to provide a potential reference for further study of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document