scholarly journals On falsification of the binary instrumental variable model

Biometrika ◽  
2017 ◽  
pp. asw064
Author(s):  
Linbo Wang ◽  
James M. Robins ◽  
Thomas S. Richardson
Biometrika ◽  
2019 ◽  
Vol 107 (1) ◽  
pp. 238-245
Author(s):  
Zhichao Jiang ◽  
Peng Ding

Summary Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment and outcome. We first consider nondifferential measurement errors, that is, the mismeasured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, that the measurement error of the treatment biases the estimate away from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings.


Biometrika ◽  
2011 ◽  
Vol 98 (4) ◽  
pp. 987-994 ◽  
Author(s):  
R. R. Ramsahai ◽  
S. L. Lauritzen

2020 ◽  
Vol 39 (29) ◽  
pp. 4386-4404
Author(s):  
Byeong Yeob Choi ◽  
Jason P. Fine ◽  
M. Alan Brookhart

Author(s):  
Tom M. Palmer ◽  
Roland R. Ramsahai ◽  
Vanessa Didelez ◽  
Nuala A. Sheehan

2019 ◽  
Vol 26 (20) ◽  
pp. 1729-1733 ◽  
Author(s):  
Meishan Jiang ◽  
Jingrong Li ◽  
Krishna P. Paudel ◽  
Yunsheng Mi

10.3982/qe240 ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 157-196 ◽  
Author(s):  
Andrew Chesher ◽  
Adam M. Rosen ◽  
Konrad Smolinski

Biometrika ◽  
2017 ◽  
Vol 104 (1) ◽  
pp. e1-e1 ◽  
Author(s):  
Linbo Wang ◽  
James M. Robins ◽  
Thomas S. Richardson

Sign in / Sign up

Export Citation Format

Share Document