measurement errors
Recently Published Documents





2022 ◽  
Vol 9 (3) ◽  
pp. 0-0

Missing data is universal complexity for most part of the research fields which introduces the part of uncertainty into data analysis. We can take place due to many types of motives such as samples mishandling, unable to collect an observation, measurement errors, aberrant value deleted, or merely be short of study. The nourishment area is not an exemption to the difficulty of data missing. Most frequently, this difficulty is determined by manipulative means or medians from the existing datasets which need improvements. The paper proposed hybrid schemes of MICE and ANN known as extended ANN to search and analyze the missing values and perform imputations in the given dataset. The proposed mechanism is efficiently able to analyze the blank entries and fill them with proper examining their neighboring records in order to improve the accuracy of the dataset. In order to validate the proposed scheme, the extended ANN is further compared against various recent algorithms or mechanisms to analyze the efficiency as well as the accuracy of the results.

2024 ◽  
Mengli Zhang ◽  
Lan Xue ◽  
Carmen D. Tekwe ◽  
Yang Bai ◽  
Annie Qu

2022 ◽  
pp. 1-19
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.

Д.А. Смирнов ◽  
В.Г. Бондарев ◽  
А.В. Николенко

Рассмотрены вопросы разработки системы, способной обеспечивать автоматическую навигацию беспилотного летательного аппарата в окрестности аэродрома без использования дополнительных датчиков. Рассмотрен алгоритм решения этой задачи с использованием бортовой монокулярной системы технического зрения, функционирующей в диапазоне 1,55 мкм. Для обеспечения навигации беспилотный летательный аппарат оснащен системой информационного обмена, а в районе точки взлета-посадки в качестве наземных источников (маяков) предложено использовать полупроводниковые лазеры с некогерентным излучением длиной волны 1,55 мкм, которые обеспечивают работу системы в простых метеоусловиях. Путем измерений угла азимута в двух точках траектории движения беспилотного летательного аппарата вычисляются его координаты местоположения относительно взлетно-посадочной полосы, а также угол курса необходимый для выхода в начальную точку глиссады снижения. Ввиду того, что погрешности измерений обусловлены ошибками измерений угла азимута, курса и скорости полета, ошибками измерения временных интервалов в данной работе пренебрегаем. Полученные графики показывают, что погрешности измерения координат беспилотного летательного аппарата минимальны при пролете напротив маяка и резко возрастают при удалении от него, что обусловлено погрешностью измерения азимута и дальности. При этом измерение местоположения беспилотного летательного аппарата необходимо выполнять на минимальном удалении от маяка The article discusses the development of a system capable of providing automatic navigation of an unmanned aerial vehicle in the vicinity of an airfield without the use of additional sensors. We considered an algorithm for solving this problem using an onboard monocular vision system operating in the range of 1.55 microns. To ensure navigation, the unmanned aerial vehicle is equipped with an information exchange system, and in the area of the take-off and landing point, we propose to use semiconductor lasers with incoherent radiation with a wavelength of 1.55 microns, which ensure the operation of the system in simple weather conditions, as ground sources (beacons). By measuring the azimuth angle at two points of the trajectory of the unmanned aerial vehicle, we calculated its location coordinates relative to the runway, as well as the course angle necessary to reach the starting point of the descent glide path. Since measurement errors are caused by errors in measuring the azimuth angle, course and flight speed, we neglected errors in measuring time intervals in this work. The obtained graphs show that the errors in measuring the coordinates of an unmanned aerial vehicle are minimal when flying in front of the lighthouse and increase sharply when moving away from it, which is due to the error in measuring azimuth and range. At the same time, the measurement of the location of the unmanned aerial vehicle must be carried out at a minimum distance from the lighthouse

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 582
Özkan Kahveci ◽  
Caner Gençoğlu ◽  
Tuncay Yalçinkaya

Fiber-optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and in the winding radius of the coil to meet system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, eventually leading to measurement errors. In order to eliminate the errors and to qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic behavior of a quadrupole wound fiber-optic coil is investigated. First, pre-wound fiber-optic coils are tested with an impact modal test, where the mode shapes and natural frequencies are determined with structural data acquisition. For the modal analysis, a finite element (FE) model is developed where a representative volume element (RVE) analysis is also included to properly consider the influence of the microstructure. The experimental and numerical results are compared and validated. Moreover, an estimation model is proposed for a type of coil with different fiber lengths. Finally, the estimated coil set is produced and tested employing the same methodology in order to illustrate the capacity of the developed framework.

2022 ◽  
Vol 10 (1) ◽  
pp. 101
Ante Šiljeg ◽  
Ivan Marić ◽  
Fran Domazetović ◽  
Neven Cukrov ◽  
Marin Lovrić ◽  

Multibeam echosounders (MBES) have become a valuable tool for underwater floor mapping. However, MBES data are often loaded with different measurement errors. This study presents a new user-friendly and methodological semi-automatic approach of point cloud post-processing error removal. The St. Anthony Channel (Croatia) was selected as the research area because it is regarded as one of the most demanding sea or river passages in the world and it is protected as a significant landscape by the Šibenik-Knin County. The two main objectives of this study, conducted within the Interreg Italy–Croatia PEPSEA project, were to: (a) propose a methodological framework that would enable the easier and user-friendly identification and removal of the errors in MBES data; (b) create a high-resolution integral model (MBES and UAV data) of the St. Anthony Channel for maritime safety and tourism promotion purposes. A hydrographic survey of the channel was carried out using WASSP S3 MBES while UAV photogrammetry was performed using Matrice 210 RTK V2. The proposed semi-automatic post-processing of the MBES acquired point cloud was completed in the Open Source CloudCompare software following five steps in which various point filtering methods were used. The reduction percentage in points after the denoising process was 14.11%. Our results provided: (a) a new user-friendly methodological framework for MBES point filtering; (b) a detailed bathymetric map of the St. Anthony Channel with a spatial resolution of 50 cm; and (c) the first integral (MBES and UAV) high-resolution model of the St. Anthony Channel. The generated models can primarily be used for maritime safety and tourism promotion purposes. In future research, ground-truthing methods (e.g., ROVs) will be used to validate the generated models.

2022 ◽  
pp. 1-9
Amir M. Benmira ◽  
Olivier Moranne ◽  
Camelia Prelipcean ◽  
Emilie Pambrun ◽  
Michel Dauzat ◽  

<b><i>Introduction:</i></b> Although arterial hypertension is a major concern in patients with chronic kidney disease (CKD), obtaining accurate systolic blood pressure (SBP) measurement is challenging in this population for whom automatic oscillometric devices may yield erroneous results. <b><i>Methods:</i></b> This cross-sectional study was conducted in 89 patients with stages 4, 5, and 5D CKD, for whom we compared SBP values obtained by the recently described systolic foot-to-apex time interval (SFATI) technique which provides direct SBP determination, the standard technique (Korotkoff sounds), and oscillometry. We investigated the effects of age, sex, diabetes, CKD stage, and pulse pressure to explain measurement errors defined as biases or misclassification relative to the SBP thresholds of 110–130-mm Hg. <b><i>Results:</i></b> All 3 techniques showed satisfactory reproducibility for SBP measurement (CCC &#x3e; 0.84 and &#x3e;0.91, respectively, in dialyzed and nondialyzed patients). The mean ± SD from SBP as determined via Korotkoff sounds was 1.7 ± 4.6 mm Hg for SFATI (CCC = 0.98) and 5.9 ± 9.3 mm Hg for oscillometry (CCC = 0.88). Referring to the 110–130-mm Hg SBP range outside which treatment prescription or adaptation is recommended for CKD patients, SFATI underestimated SBP in 3 patients and overestimated it in 1, whereas oscillometry underestimated SBP in 12 patients and overestimated it in 3. Higher pulse pressure was the main explanatory factor for measurement and classification errors. <b><i>Discussion/Conclusion:</i></b> SFATI provides accurate SBP measurements in patients with severe CKD and paves the way for the standardization of automated noninvasive blood pressure measurement devices. Before prescribing or adjusting antihypertensive therapy, physicians should be aware of the risk of misclassification when using oscillometry.

José Ángel Martínez-Huertas ◽  
Ricardo Olmos ◽  
Guillermo Jorge-Botana ◽  
José A. León

AbstractIn this paper, we highlight the importance of distilling the computational assessments of constructed responses to validate the indicators/proxies of constructs/trins using an empirical illustration in automated summary evaluation. We present the validation of the Inbuilt Rubric (IR) method that maps rubrics into vector spaces for concepts’ assessment. Specifically, we improved and validated its scores’ performance using latent variables, a common approach in psychometrics. We also validated a new hierarchical vector space, namely a bifactor IR. 205 Spanish undergraduate students produced 615 summaries of three different texts that were evaluated by human raters and different versions of the IR method using latent semantic analysis (LSA). The computational scores were validated using multiple linear regressions and different latent variable models like CFAs or SEMs. Convergent and discriminant validity was found for the IR scores using human rater scores as validity criteria. While this study was conducted in the Spanish language, the proposed scheme is language-independent and applicable to any language. We highlight four main conclusions: (1) Accurate performance can be observed in topic-detection tasks without hundreds/thousands of pre-scored samples required in supervised models. (2) Convergent/discriminant validity can be improved using measurement models for computational scores as they adjust for measurement errors. (3) Nouns embedded in fragments of instructional text can be an affordable alternative to use the IR method. (4) Hierarchical models, like the bifactor IR, can increase the validity of computational assessments evaluating general and specific knowledge in vector space models. R code is provided to apply the classic and bifactor IR method.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 493
Zygmunt Szczerba ◽  
Piotr Szczerba ◽  
Kamil Szczerba

The article presents the negative aspects of the influence of static and dynamic acceleration on the accuracy of pressure measurement for a selected type of transmitter. The influence of static accelerations from catalog notes was shown and compared with the tests results for a few selected sensors. The results of research on the influence of dynamic acceleration for various types of its variability for selected converters are presented. Moreover, a method of measurement patented by the authors that uses a complex transducer is shown. The method allows for more accurate measurements on moving objects. The tests were performed based on the proposed method. The obtained results of the influence of acceleration on the classical sensor as well as the construction using the proposed method are shown. The paper presents approximate pressure measurement errors resulting from the influence of acceleration. For example, errors in measuring the speed of an airplane may occur without the proposed method. The last part of the article presents a unique design dedicated to a multi-point pressure measurement system, which uses the presented method of eliminating the influence of accelerations on the pressure measurement.

Sign in / Sign up

Export Citation Format

Share Document