scholarly journals Age effects on brain activity associated with episodic memory retrieval. An electrophysiological study

Brain ◽  
1998 ◽  
Vol 121 (5) ◽  
pp. 861-873 ◽  
Author(s):  
R. Mark
2018 ◽  
Vol 30 (12) ◽  
pp. 1939-1951 ◽  
Author(s):  
Roger E. Beaty ◽  
Preston P. Thakral ◽  
Kevin P. Madore ◽  
Mathias Benedek ◽  
Daniel L. Schacter

The core network refers to a set of neural regions that have been consistently associated with episodic memory retrieval and episodic future simulation. This network is thought to support the constructive thought processes that allow the retrieval and flexible combination of stored information to reconstruct past and construct novel future experiences. Recent behavioral research points to an overlap between these constructive processes and those also engaged during divergent thinking—the ability to think creatively and generate novel ideas—but the extent to which they involve common neural correlates remains unclear. Using fMRI, we sought to address this question by assessing brain activity as participants recalled past experiences, simulated future experiences, or engaged in divergent thinking. Consistent with past work, we found that episodic retrieval and future simulation activated the core network compared with a semantic control condition. Critically, a triple conjunction of episodic retrieval, future simulation, and divergent thinking revealed common engagement of core network regions, including the bilateral hippocampus and parahippocampal gyrus, as well as other regions involved in memory retrieval (inferior frontal gyrus) and mental imagery (middle occipital gyrus). The results provide further insight into the roles of the hippocampus and the core network in episodic memory retrieval, future simulation, and divergent thinking and extend recent work highlighting the involvement of constructive episodic processes in creative cognition.


Author(s):  
Berit Brogaard

Despite the recent surge in research on, and interest in, synesthesia, the mechanism underlying this condition is still unknown. Feedforward mechanisms involving overlapping receptive fields of sensory neurons as well as feedback mechanisms involving a lack of signal disinhibition have been proposed. Here I show that a broad range of studies of developmental synesthesia indicate that the mechanism underlying the phenomenon may in some cases involve the reinstatement of brain activity in sensory or cognitive streams in a way that is similar to what happens during memory retrieval of semantically associated items. In the chapter’s final sections I look at the relevance of synesthesia research, given the memory model, to our understanding of multisensory perception and common mapping patterns.


2015 ◽  
Vol 1612 ◽  
pp. 30-47 ◽  
Author(s):  
Cheryl L. Grady ◽  
Marie St-Laurent ◽  
Hana Burianová

2017 ◽  
Vol 38 (4) ◽  
pp. 2242-2259 ◽  
Author(s):  
Benjamin R. Geib ◽  
Matthew L. Stanley ◽  
Nancy A. Dennis ◽  
Marty G. Woldorff ◽  
Roberto Cabeza

2010 ◽  
Vol 182 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Martin Lepage ◽  
Marc Pelletier ◽  
Amélie Achim ◽  
Alonso Montoya ◽  
Matthew Menear ◽  
...  

2007 ◽  
Vol 45 (6) ◽  
pp. 1223-1231 ◽  
Author(s):  
Adam L. Lawson ◽  
Chunyan Guo ◽  
Yang Jiang

Sign in / Sign up

Export Citation Format

Share Document