parahippocampal gyrus
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 153)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qiong Ma ◽  
Xiudong Shi ◽  
Guochao Chen ◽  
Fengxiang Song ◽  
Fengjun Liu ◽  
...  

Purpose:Neuroimaging elucidations have shown structural and functional brain alterations in HIV-infected (HIV+) individuals when compared to HIV-negative (HIV–) controls. However, HIV− groups used in previous studies were not specifically considered for sexual orientation, which also affects the brain structures and functions. The current study aimed to characterize the brain alterations associated with HIV infection while controlling for sexual orientation.Methods:Forty-three HIV+ and 40 HIV– homosexual men (HoM) were recruited and underwent resting-state MRI scanning. Group differences in gray matter volume (GMV) were assessed using a voxel-based morphometry analysis. Brain regions with the altered GMV in the HIV+ HoM group were then taken as regions of interest in a seed-based analysis to identify altered functional connectivity. Furthermore, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity values were compared between the two groups to evaluate the HIV-associated functional abnormalities in local brain regions.Results:HIV+ HoM showed significantly increased GMV in the bilateral parahippocampal gyrus and amygdala, and decreased GMV in the right inferior cerebellum, compared with the HIV– HoM. The brain regions with increased GMV were hyper-connected with the left superior cerebellum, right lingual gyrus, and left precuneus in the HIV+ HoM. Moreover, the ALFF values of the right fusiform gyrus, and left parahippocampal gyrus were increased in the HIV+ HoM. The regional homogeneity values of the right anterior cingulate and paracingulate gyri, and left superior cerebellum were decreased in the HIV+ HoM.Conclusion:When the study population was restricted to HoM, HIV+ individuals exhibited structural alterations in the limbic system and cerebellum, and functional abnormalities in the limbic, cerebellum, and visual network. These findings complement the existing knowledge on the HIV-associated neurocognitive impairment from the previous neuroimaging studies by controlling for the potential confounding factor, sexual orientation. Future studies on brain alternations with the exclusion of related factors like sexual orientation are needed to understand the impact of HIV infection on neurocognitive function more accurately.


2022 ◽  
Author(s):  
Ting-Kai Leung ◽  
Chia-Wei Li ◽  
Yu-Chun Lo ◽  
Ping-Yen Tsai ◽  
Jia-Yi Wang

Abstract There is still no clear explanation of the process of perceptual consciousness that connects our body with brain. Innovation on the technology of bioceramic has now advanced towards clinical applications, including rehabilitation of brain infarction, therapies of insomnia and migraine. To demonstrate how ‘resonant energy transfer through the bioceramic material with tempo sound and visible light spectrum’ (bioceramic material stimulation, BMS) non-invasively affects perceptual consciousness, we investigated the responses of participants to BMS on perceptual consciousness by questionnaire of subjective descriptions and analyzed resting state fMRI during BMS. There were 61.3% participants who were categorized as positive group with various types of perceptual consciousness. By setting a threshold value at ‘p<0.001’, enhanced connections of ‘parahippocampal gyrus to cerebellar lobule V’ and ‘angular gyrus to precuneus’ were found. However, decreased connection of ‘caudate nucleus to cerebellar lobule VIIb’ was found. We conclude that the most affected brain functions by BMS including somatosensory, audio-visual perception and social cognition. The analysis of functional connectivity during BMS may help us gain more knowledge of consciousness and related division of neuroscience in humans.


2022 ◽  
Vol 15 ◽  
Author(s):  
Sébastien Celle ◽  
Claire Boutet ◽  
Cédric Annweiler ◽  
Romain Ceresetti ◽  
Vincent Pichot ◽  
...  

Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults.Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition.Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression.Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.


2022 ◽  
pp. 194187442110553
Author(s):  
Najo Jomaa ◽  
Tarek El Halabi ◽  
Jawad Melhem ◽  
Georgette Dib ◽  
Youssef Ghosn ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) has been associated with many neurological complications affecting the central nervous system. Purpose: Our aim was to describe a case of COVID-19 associated with a probable variant of acute necrotizing encephalopathy (ANE). Results: A 60-year-old man who presented with a 3-day history of dyspnea, fever, and cough tested positive for severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2). Five days following his admission, the patient was intubated secondary to respiratory failure. Following his extubation 16 days later, he was found to have a left-sided weakness. Magnetic resonance imaging (MRI) of the brain showed hemorrhagic rim-enhancing lesions involving the right thalamus, left hippocampus, and left parahippocampal gyrus. These lesions showed decreased relative cerebral blood flow on MR perfusion and restricted on diffusion-weighted imaging. These neuroimaging findings were consistent with ANE. The left-sided weakness gradually improved over the subsequent weeks. Conclusions: We concluded that COVID-19 can be associated with ANE, a condition believed to be the result of an immune-mediated process with activation of the innate immune system. Future studies must address whether biological drugs targeting the pro-inflammatory cytokines could prevent the development of this condition.


2022 ◽  
Author(s):  
Fan Yang ◽  
Hanjiaerbieke Kukun ◽  
Wenxiao Jia ◽  
Shuang Ding ◽  
Wei Zhao ◽  
...  

Abstract Background MRI-negative TLE (TLE-N) is a manifestation lacks visible MRI findings yet with detectable electrophysiological changes. In this study, differences of gray matter in drug-controlled MRI negative temporal lobe epilepsy (cTLE-N) and drug-resistant MRI negative temporal lobe epilepsy (rTLE-N) patients were calculated and analyzed by voxel-based morphology (VBM) and surface-based morphology (SBM), to discover the brain structural changes of TLE-N patients. Materials and methods Consecutive resident patients with 30 cTLE-N and 21 rTLE-N were recruited into respective groups, and 30 healthy controls’ structural MRI (sMRI) data collected as a control group. Open-source software based on VBM and SBM was deployed as gray matter volume (GMV) and cortical thickness (CT) analytic tools. Results VBM analysis showed that GMV of bilateral thalamus and right lingual gyrus of cTLE-N group, and left hippocampus, left fusiform gyrus and left thalamus of rTLE-N group were smaller compared to HC group(FDR corrected, P<0.05), while right cerebellum, inferior temporal gyrus, hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, orbital middle frontal gyrus, and left posterior central gyrus in cTLE-N group, and bilateral cerebellum and middle temporal gyrus, right fusiform gyrus, amygdala, hippocampus, and left middle occipital gyrus of rTLE-N group were greater than HC group(FDR corrected, P<0.05). SBM analysis showed that CT of the left medial orbitofrontal cortex and lateral occipital cortex in cTLE-N group, and thickness of the left medial orbitofrontal, temporal pole, middle temporal gyrus and right anterior superior cingulate cortex in rTLE-N group were thinner, compared to HC group. Correlation analysis showed that GMV and CT of different structures were correlated with age of onset, disease duration, and MoCA score. Conclusion This study utilized two different sMRI analytic tools and discovered several brain morphological changes in TLE-N. These morphological changes were also correlated with clinical variables. Further study may indicate the potential of these findings on the recognition of the TLE-N epilepsy network.


2022 ◽  
Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTIONDown syndrome (DS) is the most common genetic cause of intellectual disability. Children and adults with DS show deficits in various aspects of language performance and explicit memory. Here we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODSThirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTSThe neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures. Intriguingly, our DS patients showed also a reduced parahippocampal gyrus volume, in contrast with the results found by other researchers.CONCLUSIONSThe memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting Su ◽  
Pei-Wen Zhu ◽  
Biao Li ◽  
Wen-Qing Shi ◽  
Qi Lin ◽  
...  

AbstractThis study proposes the use of the voxel-based morphometry (VBM) technique to investigate structural alterations of the cerebral cortex in patients with strabismus and amblyopia (SA). Sixteen patients with SA and sixteen healthy controls (HCs) underwent magnetic resonance imaging. Original whole brain images were analyzed using the VBM method. Pearson correlation analysis was performed to evaluate the relationship between mean gray matter volume (GMV) and clinical manifestations. Receiver operating characteristic (ROC) curve analysis was applied to classify the mean GMV values of the SA group and HCs. Compared with the HCs, GMV values in the SA group showed a significant difference in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, bilateral parahippocampal gyrus, and left anterior cingulate cortex. The mean GMV value in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, and bilateral parahippocampal gyrus were negatively correlated with the angle of strabismus. The ROC curve analysis of each cerebral region confirmed the accuracy of the area under the curve. Patients with SA have reduced GMV values in some brain regions. These findings might help to reveal the potential pathogenesis of SA and its relationship with the atrophy of specific regions of the brain.


2022 ◽  
Vol 15 ◽  
Author(s):  
Shaoyue He ◽  
Tingting Peng ◽  
Weiwei He ◽  
Chen Gou ◽  
Changyue Hou ◽  
...  

Objective: To observe the characteristics of brain fMRI during olfactory stimulation in patients with neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis (MS), compare the differences of brain functional activation areas between patients with NMOSD and MS, and explore the characteristics of olfactory-related brain networks of NMOSD and MS.Methods: Nineteen patients with NMOSD and 16 patients with MS who met the diagnostic criteria were recruited, and 19 healthy controls matched by sex and age were recruited. The olfactory function of all participants was assessed using the visual analog scale (VAS). Olfactory stimulation was alternately performed using a volatile body (lavender and rose solution) and the difference in brain activation was evaluated by task-taste fMRI scanning simultaneously.Results: Activation intensity was weaker in the NMOSD group than in the healthy controls, including the left rectus, right superior temporal gyrus, and left cuneus. The activation intensity was stronger for the NMOSD than the controls in the left insula and left middle frontal gyrus (P &lt; 0.05). Activation intensity was weaker in the MS group than the healthy controls in the bilateral hippocampus, right parahippocampal gyrus, right insula, left rectus gyrus, and right precentral gyrus, and stronger in the left paracentral lobule among the MS than the controls (P &lt; 0.05). Compared with the MS group, activation intensity in the NMOSD group was weaker in the right superior temporal gyrus and left paracentral lobule, while it was stronger among the NMOSD group in the bilateral insula, bilateral hippocampus, bilateral parahippocampal gyrus, left inferior orbital gyrus, left superior temporal gyrus, left putamen, and left middle frontal gyrus (P &lt; 0.05).Conclusion: Olfactory-related brain networks are altered in both patients, and there are differences between their olfactory-related brain networks. It may provide a new reference index for the clinical differentiation and disease evaluation of NMOSD and MS. Moreover, further studies are needed.


Author(s):  
Sophie Stenger ◽  
Sebastian Bludau ◽  
Hartmut Mohlberg ◽  
Katrin Amunts

AbstractBrain areas at the parahippocampal gyrus of the temporal–occipital transition region are involved in different functions including processing visual–spatial information and episodic memory. Results of neuroimaging experiments have revealed a differentiated functional parcellation of this region, but its microstructural correlates are less well understood. Here we provide probability maps of four new cytoarchitectonic areas, Ph1, Ph2, Ph3 and CoS1 at the parahippocampal gyrus and collateral sulcus. Areas have been identified based on an observer-independent mapping of serial, cell-body stained histological sections of ten human postmortem brains. They have been registered to two standard reference spaces, and superimposed to capture intersubject variability. The comparison of the maps with functional imaging data illustrates the different involvement of the new areas in a variety of functions. Maps are available as part of Julich-Brain atlas and can be used as anatomical references for future studies to better understand relationships between structure and function of the caudal parahippocampal cortex.


2022 ◽  
Vol 12 ◽  
Author(s):  
Maria Chiara Piani ◽  
Eleonora Maggioni ◽  
Giuseppe Delvecchio ◽  
Adele Ferro ◽  
Davide Gritti ◽  
...  

Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of the elderly population. Higher female prevalence and sex-specific symptomatology have been observed, suggesting that biologically-determined dimensions might affect the disease onset and outcome. Rumination and executive dysfunction characterize adult-onset MDD, but sex differences in these domains and in the related brain mechanisms are still largely unexplored. The present pilot study aimed to explore any interactions between adult-onset MDD and sex on brain morphology and brain function during a Go/No-Go paradigm. We hypothesized to detect diagnosis by sex effects on brain regions involved in self-referential processes and cognitive control. Twenty-four subjects, 12 healthy (HC) (mean age 68.7 y, 7 females and 5 males) and 12 affected by adult-onset MDD (mean age 66.5 y, 5 females and 7 males), underwent clinical evaluations and a 3T magnetic resonance imaging (MRI) session. Diagnosis and diagnosis by sex effects were assessed on regional gray matter (GM) volumes and task-related functional MRI (fMRI) activations. The GM volume analyses showed diagnosis effects in left mid frontal cortex (p &lt; 0.01), and diagnosis by sex effects in orbitofrontal, olfactory, and calcarine regions (p &lt; 0.05). The Go/No-Go fMRI analyses showed MDD effects on fMRI activations in left precuneus and right lingual gyrus, and diagnosis by sex effects on fMRI activations in right parahippocampal gyrus and right calcarine cortex (p &lt; 0.001, ≥ 40 voxels). Our exploratory results suggest the presence of sex-specific brain correlates of adult-onset MDD–especially in regions involved in attention processing and in the brain default mode–potentially supporting cognitive and symptom differences between sexes.


Sign in / Sign up

Export Citation Format

Share Document