Error bounds for Gaussian quadrature formulae with Bernstein-Szego weights that are rational modifications of Chebyshev weight functions of the second kind

2012 ◽  
Vol 32 (4) ◽  
pp. 1733-1754 ◽  
Author(s):  
A. V. Pejcev ◽  
M. M. Spalevic
2017 ◽  
Vol 11 (2) ◽  
pp. 451-469
Author(s):  
Aleksandar Pejcev

For analytic functions we study the remainder terms of Gauss quadrature rules with respect to Bernstein-Szeg? weight functions w(t) = w?,?,?(t) = ?1+t/ 1-t/?(?-2?)t2+2?(?-?)t+?2+?2, t?(-1,1), where 0 < ? < ?, ??2?, ??? < ?-?, and whose denominator is an arbitrary polynomial of exact degree 2 that remains positive on [-1,1]. The subcase ?=1, ?= 2/(1+?), -1 < ? < 0 and ?=0 has been considered recently by M. M. Spalevic, Error bounds of Gaussian quadrature formulae for one class of Bernstein-Szeg? weights, Math. Comp., 82 (2013), 1037-1056.


2020 ◽  
Vol 369 ◽  
pp. 124806
Author(s):  
Ramón Orive ◽  
Aleksandar V. Pejčev ◽  
Miodrag M. Spalević

2012 ◽  
Vol 218 (9) ◽  
pp. 5746-5756 ◽  
Author(s):  
Miodrag M. Spalević ◽  
Miroslav S. Pranić ◽  
Aleksandar V. Pejčev

2015 ◽  
Vol 133 (1) ◽  
pp. 177-201 ◽  
Author(s):  
Aleksandar V. Pejčev ◽  
Miodrag M. Spalević

2006 ◽  
Vol 6 (3) ◽  
pp. 291-305 ◽  
Author(s):  
G.V. Milovanović ◽  
M.M. Spalević ◽  
L.J. Galjak

Abstract In this paper, general real Kronrod extensions of Gaussian quadrature formulas with multiple nodes are introduced. A proof of their existence and uniqueness is given. In some cases, the explicit expressions of polynomials, whose zeros are the nodes of the considered quadratures, are determined. Very effective error bounds of the Gauss — Turán — Kronrod quadrature formulas, with Gori — Micchelli weight functions, for functions analytic on confocal ellipses, are derived.


2010 ◽  
Vol 234 (4) ◽  
pp. 1049-1057 ◽  
Author(s):  
Miodrag M. Spalević ◽  
Miroslav S. Pranić

2017 ◽  
Vol 77 (4) ◽  
pp. 1003-1028
Author(s):  
Dušan Lj. Djukić ◽  
Aleksandar V. Pejčev ◽  
Miodrag M. Spalević

Sign in / Sign up

Export Citation Format

Share Document