scholarly journals From Hierarchical to Relative Hyperbolicity

Author(s):  
Jacob Russell

Abstract We provide a simple, combinatorial criteria for a hierarchically hyperbolic space to be relatively hyperbolic by proving a new formulation of relative hyperbolicity in terms of hierarchy structures. In the case of clean hierarchically hyperbolic groups, this criteria characterizes relative hyperbolicity. We apply our criteria to graphs associated to surfaces and prove that the separating curve graph of a surface is relatively hyperbolic when the surface has zero or two punctures. We also recover a celebrated theorem of Brock and Masur on the relative hyperbolicity of the Weil–Petersson metric on Teichmüller space for surfaces with complexity three.

2013 ◽  
Vol 23 (07) ◽  
pp. 1551-1572 ◽  
Author(s):  
HUNG CONG TRAN

Suppose a group G is relatively hyperbolic with respect to a collection ℙ of its subgroups and also acts properly, cocompactly on a CAT(0) (or δ-hyperbolic) space X. The relatively hyperbolic structure provides a relative boundary ∂(G, ℙ). The CAT(0) structure provides a different boundary at infinity ∂X. In this paper, we examine the connection between these two spaces at infinity. In particular, we show that ∂(G, ℙ) is G-equivariantly homeomorphic to the space obtained from ∂X by identifying the peripheral limit points of the same type.


1999 ◽  
Vol 85 (2) ◽  
pp. 169 ◽  
Author(s):  
Boris Goldfarb

We consider a class of relatively hyperbolic groups in the sense of Gromov and use an argument modeled after Carlsson-Pedersen to prove Novikov conjectures for these groups. This proof is related to [16,17] which dealt with arithmetic lattices in rank one symmetric spaces and some other arithmetic groups of higher rank. Here whe view the rank one lattices in this different larger context of relativve hyperbolicity which also inclues fundamental groups of pinched hyperbolic manifolds. Another large family of groups from this class is produced using combinatorial hyperbolization techniques.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250016 ◽  
Author(s):  
B. H. BOWDITCH

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a bounded parabolic point. The other is that of a group which admits a cofinite action on a connected fine hyperbolic graph. We define a graph to be "fine" if there are only finitely many circuits a given length containing any given edge, and we develop some of the properties of this notion. We show how a relatively hyperbolic group can be assumed to act on a proper hyperbolic space of a particular geometric form. We define the boundary of a relatively hyperbolic group, and show that the limit set of any geometrically finite action of the group is equivariantly homeomorphic to this boundary. This generalizes a result of Tukia for geometrically finite kleinian groups. We also describe when the boundary is connected.


Author(s):  
Jacob Russell ◽  
Davide Spriano ◽  
Hung Cong Tran

AbstractWe show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.


2015 ◽  
Vol 9 (2) ◽  
pp. 599-663 ◽  
Author(s):  
Vincent Guirardel ◽  
Gilbert Levitt

1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.


Sign in / Sign up

Export Citation Format

Share Document