scholarly journals RELATIONS BETWEEN VARIOUS BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS

2013 ◽  
Vol 23 (07) ◽  
pp. 1551-1572 ◽  
Author(s):  
HUNG CONG TRAN

Suppose a group G is relatively hyperbolic with respect to a collection ℙ of its subgroups and also acts properly, cocompactly on a CAT(0) (or δ-hyperbolic) space X. The relatively hyperbolic structure provides a relative boundary ∂(G, ℙ). The CAT(0) structure provides a different boundary at infinity ∂X. In this paper, we examine the connection between these two spaces at infinity. In particular, we show that ∂(G, ℙ) is G-equivariantly homeomorphic to the space obtained from ∂X by identifying the peripheral limit points of the same type.

2012 ◽  
Vol 22 (03) ◽  
pp. 1250016 ◽  
Author(s):  
B. H. BOWDITCH

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a bounded parabolic point. The other is that of a group which admits a cofinite action on a connected fine hyperbolic graph. We define a graph to be "fine" if there are only finitely many circuits a given length containing any given edge, and we develop some of the properties of this notion. We show how a relatively hyperbolic group can be assumed to act on a proper hyperbolic space of a particular geometric form. We define the boundary of a relatively hyperbolic group, and show that the limit set of any geometrically finite action of the group is equivariantly homeomorphic to this boundary. This generalizes a result of Tukia for geometrically finite kleinian groups. We also describe when the boundary is connected.


Author(s):  
Jacob Russell ◽  
Davide Spriano ◽  
Hung Cong Tran

AbstractWe show the mapping class group, $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups, the fundamental groups of closed 3-manifolds, and certain relatively hyperbolic groups have a local-to-global property for Morse quasi-geodesics. This allows us to generalize combination theorems of Gitik for quasiconvex subgroups of hyperbolic groups to the stable subgroups of these groups. In the case of the mapping class group, this gives combination theorems for convex cocompact subgroups. We show a number of additional consequences of this local-to-global property, including a Cartan–Hadamard type theorem for detecting hyperbolicity locally and discreteness of translation length of conjugacy classes of Morse elements with a fixed gauge. To prove the relatively hyperbolic case, we develop a theory of deep points for local quasi-geodesics in relatively hyperbolic spaces, extending work of Hruska.


2015 ◽  
Vol 9 (2) ◽  
pp. 599-663 ◽  
Author(s):  
Vincent Guirardel ◽  
Gilbert Levitt

2008 ◽  
Vol 18 (01) ◽  
pp. 97-110 ◽  
Author(s):  
IGOR BELEGRADEK ◽  
ANDRZEJ SZCZEPAŃSKI

We generalize some results of Paulin and Rips-Sela on endomorphisms of hyperbolic groups to relatively hyperbolic groups, and in particular prove the following. • If G is a nonelementary relatively hyperbolic group with slender parabolic subgroups, and either G is not co-Hopfian or Out (G) is infinite, then G splits over a slender group. • If H is a nonparabolic subgroup of a relatively hyperbolic group, and if any isometric H-action on an ℝ-tree is trivial, then H is Hopfian. • If G is a nonelementary relatively hyperbolic group whose peripheral subgroups are finitely generated, then G has a nonelementary relatively hyperbolic quotient that is Hopfian. • Any finitely presented group is isomorphic to a finite index subgroup of Out (H) for some group H with Kazhdan property (T). (This sharpens a result of Ollivier–Wise).


2013 ◽  
Vol 05 (04) ◽  
pp. 451-475 ◽  
Author(s):  
BRADLEY W. GROFF

We demonstrate the quasi-isometry invariance of two important geometric structures for relatively hyperbolic groups: the coned space and the cusped space. As applications, we produce a JSJ-decomposition for relatively hyperbolic groups which is invariant under quasi-isometries and outer automorphisms, as well as a related splitting of the quasi-isometry groups of relatively hyperbolic groups.


2015 ◽  
Vol 25 (05) ◽  
pp. 689-723 ◽  
Author(s):  
Inna Bumagin

If u and v are two conjugate elements of a hyperbolic group then the length of a shortest conjugating element for u and v can be bounded by a linear function of the sum of their lengths, as was proved by Lysenok in [Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat. 53(4) (1989) 814–832, 912]. Bridson and Haefliger showed in [Metrics Spaces of Non-Positive Curvature (Springer-Verlag, Berlin, 1999)] that in a hyperbolic group the conjugacy problem can be solved in polynomial time. We extend these results to relatively hyperbolic groups. In particular, we show that both the conjugacy problem and the conjugacy search problem can be solved in polynomial time in a relatively hyperbolic group, whenever the corresponding problem can be solved in polynomial time in each parabolic subgroup. We also prove that if u and v are two conjugate hyperbolic elements of a relatively hyperbolic group then the length of a shortest conjugating element for u and v is linear in terms of their lengths.


2012 ◽  
Vol 04 (01) ◽  
pp. 99-113 ◽  
Author(s):  
TOMOHIRO FUKAYA ◽  
SHIN-ICHI OGUNI

We study a group which is hyperbolic relative to a finite family of infinite subgroups. We show that the group satisfies the coarse Baum–Connes conjecture if each subgroup belonging to the family satisfies the coarse Baum–Connes conjecture and admits a finite universal space for proper actions. If the group is torsion-free, then it satisfies the analytic Novikov conjecture.


Sign in / Sign up

Export Citation Format

Share Document