NEW POLARIZATIONS ON THE MODULI SPACES AND THE THURSTON COMPACTIFICATION OF TEICHMÜLLER SPACE

1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.

Author(s):  
Vladimir Fock ◽  
Alexander Thomas

Abstract We introduce and analyze a new geometric structure on topological surfaces generalizing the complex structure. To define this so-called higher complex structure, we use the punctual Hilbert scheme of the plane. The moduli space of higher complex structures is defined and is shown to be a generalization of the classical Teichmüller space. We give arguments for the conjectural isomorphism between the moduli space of higher complex structures and Hitchin’s component.


2006 ◽  
Vol 08 (04) ◽  
pp. 481-534 ◽  
Author(s):  
DAVID RADNELL ◽  
ERIC SCHIPPERS

One of the basic geometric objects in conformal field theory (CFT) is the moduli space of Riemann surfaces whose n boundaries are "rigged" with analytic parametrizations. The fundamental operation is the sewing of such surfaces using the parametrizations to identify points. An alternative model is the moduli space of n-punctured Riemann surfaces together with local biholomorphic coordinates at the punctures. We refer to both of these moduli spaces as the "rigged Riemann moduli space".By generalizing to quasisymmetric boundary parametrizations, and defining rigged Teichmüller spaces in both the border and puncture pictures, we prove the following results: (1) The Teichmüller space of a genus-g surface bordered by n closed curves covers the rigged Riemann and rigged Teichmüller moduli spaces of surfaces of the same type, and induces complex manifold structures on them; (2) With this complex structure, the sewing operation is holomorphic; (3) The border and puncture pictures of the rigged moduli and rigged Teichmüller spaces are biholomorphically equivalent.These results are necessary in rigorously defining CFT (in the sense of G. Segal), as well as for the construction of CFT from vertex operator algebras.


2017 ◽  
Vol 39 (06) ◽  
pp. 1710-1728
Author(s):  
BINBIN XU

We prove that the pressure metric on the Teichmüller space of a bordered surface is incomplete and that a completion can be given by the moduli space of metrics on a graph (dual to a special ideal triangulation of the same bordered surface) equipped with pressure metric. In contrast to the closed surface case, we obtain as a corollary that the pressure metric is not bi-Lipschitz to the Weil–Petersson metric.


2019 ◽  
Vol 2019 (749) ◽  
pp. 87-132
Author(s):  
Laurent Meersseman

Abstract Kuranishi’s fundamental result (1962) associates to any compact complex manifold {X_{0}} a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to {X_{0}} . In this paper, we give an analogous statement for Levi-flat CR-manifolds fibering properly over the circle by associating to any such {\mathcal{X}_{0}} the loop space of a finite-dimensional analytic space which serves as a local moduli space of CR-structures close to {\mathcal{X}_{0}} . We then develop in this context a Kodaira–Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.


2019 ◽  
Vol 7 ◽  
Author(s):  
IAN LE

Let $S$ be a surface, $G$ a simply connected classical group, and $G^{\prime }$ the associated adjoint form of the group. We show that the moduli spaces of framed local systems ${\mathcal{X}}_{G^{\prime },S}$ and ${\mathcal{A}}_{G,S}$, which were constructed by Fock and Goncharov [‘Moduli spaces of local systems and higher Teichmuller theory’, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–212], have the structure of cluster varieties, and thus together form a cluster ensemble. This simplifies some of the proofs in that paper, and also allows one to quantize higher Teichmuller space, which was previously only possible when $G$ was of type $A$.


Author(s):  
Michael Wiemeler

Abstract Let $M$ be a simply connected spin manifold of dimension at least six, which admits a metric of positive scalar curvature. We show that the observer moduli space of positive scalar curvature metrics on $M$ has non-trivial higher homotopy groups. Moreover, denote by $\mathcal{M}_0^+(M)$ the moduli space of positive scalar curvature metrics on $M$ associated to the group of orientation-preserving diffeomorphisms of $M$. We show that if $M$ belongs to a certain class of manifolds that includes $(2n-2)$-connected $(4n-2)$-dimensional manifolds, then the fundamental group of $\mathcal{M}_0^+(M)$ is non-trivial.


2019 ◽  
pp. 1-45
Author(s):  
Subhojoy Gupta

We use meromorphic quadratic differentials with higher order poles to parametrize the Teichmüller space of crowned hyperbolic surfaces. Such a surface is obtained on uniformizing a compact Riemann surface with marked points on its boundary components, and has noncompact ends with boundary cusps. This extends Wolf’s parametrization of the Teichmüller space of a closed surface using holomorphic quadratic differentials. Our proof involves showing the existence of a harmonic map from a punctured Riemann surface to a crowned hyperbolic surface, with prescribed principal parts of its Hopf differential which determine the geometry of the map near the punctures.


2018 ◽  
Vol 2020 (8) ◽  
pp. 2542-2560 ◽  
Author(s):  
Subhojoy Gupta ◽  
Harish Seshadri

Abstract We prove that the Teichmüller space $\mathscr{T}$ of a closed surface of genus $g \ge 2$ cannot be biholomorphic to any domain which is locally strictly convex at some boundary point.


2004 ◽  
Vol 56 (6) ◽  
pp. 1228-1236 ◽  
Author(s):  
Nan-Kuo Ho ◽  
Chiu-Chu Melissa Liu

AbstractWe study the connectedness of the moduli space of gauge equivalence classes of flat G-connections on a compact orientable surface or a compact nonorientable surface for a class of compact connected Lie groups. This class includes all the compact, connected, simply connected Lie groups, and some non-semisimple classical groups.


Sign in / Sign up

Export Citation Format

Share Document