scholarly journals The First Integral Cohomology of Pure Mapping Class Groups

Author(s):  
Javier Aramayona ◽  
Priyam Patel ◽  
Nicholas G Vlamis

Abstract It is a classical result that pure mapping class groups of connected, orientable surfaces of finite type and genus at least 3 are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surface’s simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.

1998 ◽  
Vol 123 (3) ◽  
pp. 487-499 ◽  
Author(s):  
MUSTAFA KORKMAZ

Recall that the first homology group H1(G) of a group G is the derived quotient G/[G, G]. The first homology groups of the mapping class groups of closed orientable surfaces are well known. Let F be a closed orientable surface of genus g. Recall that the extended mapping class group [Mscr ]*F of the surface F is the group of the isotopy classes of self-homeomorphisms of F. The mapping class group [Mscr ]F of F is the subgroup of [Mscr ]*F consisting of the isotopy classes of orientation-preserving self-homeomorphisms of F. It is well known that [Mscr ]F is trivial if F is a sphere. Hence the first homology group of the mapping class group of a sphere is trivial. If the genus of F is at least three, then H1([Mscr ]F) is again trivial. This result is due to Powell [P]. The group H1([Mscr ]F) is Z10 if the genus of F is two, proved by Mumford [Mu], and Z12 if F is a torus. When a problem about orientable surfaces is solved, it is natural to ask the corresponding problem for nonorientable surfaces. This is our motivation for the present paper.


Author(s):  
D. D. Long

0. If Fg is a closed, orientable surface of genus g, then the mapping class group of Fg is the group whose elements are orientation preserving self homeomorphisms of Fg modulo isotopy. We shall denote this group by Mg. Recall that a group is said to be linear if it admits a faithful representation as a group of matrices (where the entries for this purpose will be in some field).


Author(s):  
ANDREA BIANCHI

Abstract We consider the Birman–Hilden inclusion $\phi\colon\Br_{2g+1}\to\Gamma_{g,1}$ of the braid group into the mapping class group of an orientable surface with boundary, and prove that $\phi$ is stably trivial in homology with twisted coefficients in the symplectic representation $H_1(\Sigma_{g,1})$ of the mapping class group; this generalises a result of Song and Tillmann regarding homology with constant coefficients. Furthermore we show that the stable homology of the braid group with coefficients in $\phi^*(H_1(\Sigma_{g,1}))$ has only 4-torsion.


2021 ◽  
Vol 157 (8) ◽  
pp. 1807-1852
Author(s):  
Matt Clay ◽  
Johanna Mangahas ◽  
Dan Margalit

We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.


2020 ◽  
Vol 32 (2) ◽  
pp. 279-286
Author(s):  
Ignat Soroko

AbstractBy analyzing known presentations of the pure mapping groups of orientable surfaces of genus g with b boundary components and n punctures in the cases when {g=0} with b and n arbitrary, and when {g=1} and {b+n} is at most 3, we show that these groups are isomorphic to some groups related to the braid groups and the Artin group of type {D_{4}}. As a corollary, we conclude that the pure mapping class groups are linear in these cases.


2018 ◽  
Vol 68 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Juliette Bavard ◽  
Anthony Genevois

AbstractWe give a criterion to prove that some groups are not acylindrically hyperbolic. As an application, we prove that the mapping class group of an infinite type surface is not acylindrically hyperbolic.


2001 ◽  
Vol 10 (05) ◽  
pp. 763-767 ◽  
Author(s):  
JUSTIN ROBERTS

The SU(2) TQFT representation of the mapping class group of a closed surface of genus g, at a root of unity of prime order, is shown to be irreducible. Some examples of reducible representations are also given.


2020 ◽  
Vol 26 (5) ◽  
Author(s):  
Manuel Krannich

AbstractWe compute the mapping class group of the manifolds $$\sharp ^g(S^{2k+1}\times S^{2k+1})$$ ♯ g ( S 2 k + 1 × S 2 k + 1 ) for $$k>0$$ k > 0 in terms of the automorphism group of the middle homology and the group of homotopy $$(4k+3)$$ ( 4 k + 3 ) -spheres. We furthermore identify its Torelli subgroup, determine the abelianisations, and relate our results to the group of homotopy equivalences of these manifolds.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter introduces the reader to Artin's classical braid groups Bₙ. The group Bₙ is isomorphic to the mapping class group of a disk with n marked points. Since disks are planar, the braid groups lend themselves to special pictorial representations. This gives the theory of braid groups its own special flavor within the theory of mapping class groups. The chapter begins with a discussion of three equivalent ways of thinking about the braid group, focusing on Artin's classical definition, fundamental groups of configuration spaces, and the mapping class group of a punctured disk. It then presents some classical facts about the algebraic structure of the braid group, after which a new proof of the Birman–Hilden theorem is given to relate the braid groups to the mapping class groups of closed surfaces.


Author(s):  
Leah Childers ◽  
Dan Margalit

This chapter considers the mapping class group, the group of symmetries of a surface, and some of its basic properties. It first provides an overview of surfaces and the concept of homeomorphism before giving examples of homeomorphisms and defining the mapping class group as a certain quotient of the group of homeomorphisms of a surface. It then looks at Dehn twists and describes some of the relations they satisfy. It also presents a theorem stating that the mapping class group of a compact orientable surface is generated by Dehn twists and proves it. It concludes with some projects and open problems. The discussion also includes various exercises.


Sign in / Sign up

Export Citation Format

Share Document