scholarly journals There Are Many More Positive Maps Than Completely Positive Maps

2017 ◽  
Vol 2019 (11) ◽  
pp. 3313-3375 ◽  
Author(s):  
Igor Klep ◽  
Scott McCullough ◽  
Klemen Šivic ◽  
Aljaž Zalar

Abstract A $\ast$-linear map $\Phi$ between matrix spaces is positive if it maps positive semidefinite matrices to positive semidefinite ones, and is called completely positive if all its ampliations $I_n\otimes \Phi$ are positive. In this article, quantitative bounds on the fraction of positive maps that are completely positive are proved. A main tool is the real algebraic geometry techniques developed by Blekherman to study the gap between positive polynomials and sums of squares. Finally, an algorithm to produce positive maps that are not completely positive is given.

2006 ◽  
Vol 16 (3) ◽  
pp. 429-451 ◽  
Author(s):  
ELLIE D'HONDT ◽  
PRAKASH PANANGADEN

We develop a notion of predicate transformer and, in particular, the weakest precondition, appropriate for quantum computation. We show that there is a Stone-type duality between the usual state-transformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum computation to probabilistic programming, we develop a notion that is directly taken from concepts used in quantum computation. The proof that weakest preconditions exist for completely positive maps follows immediately from the Kraus representation theorem. As an example, we give the semantics of Selinger's language in terms of our weakest preconditions. We also cover some specific situations and exhibit an interesting link with stabilisers.


1992 ◽  
Vol 03 (02) ◽  
pp. 185-204 ◽  
Author(s):  
MASAMICHI HAMANA

The main result asserts that given two monotone complete C*-algebras A and B, B is faithfully represented as a monotone closed C*-subalgebra of the monotone complete C*-algebra End A(X) consisting of all bounded module endomorphisms of some self-dual Hilbert A-module X if and only if there are sufficiently many normal completely positive maps of B into A. The key to the proof is the fact that each pre-Hilbert A-module can be completed uniquely to a self-dual Hilbert A-module.


Sign in / Sign up

Export Citation Format

Share Document