algebraic quantum
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Jayendra N. Bandyopadhyay ◽  
Juzar Thingna

Author(s):  
Marco Benini ◽  
Marco Perin ◽  
Alexander Schenkel

AbstractThis paper proposes a refinement of the usual concept of algebraic quantum field theories (AQFTs) to theories that are smooth in the sense that they assign to every smooth family of spacetimes a smooth family of observable algebras. Using stacks of categories, this proposal is realized concretely for the simplest case of 1-dimensional spacetimes, leading to a stack of smooth 1-dimensional AQFTs. Concrete examples of smooth AQFTs, of smooth families of smooth AQFTs and of equivariant smooth AQFTs are constructed. The main open problems that arise in upgrading this approach to higher dimensions and gauge theories are identified and discussed.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012027
Author(s):  
V V Monakhov ◽  
A V Kozhedub

Abstract We have developed the theory of Clifford reflections and extended spacetime inversions. This extended spacetime has two additional dimensions associated with the presence of internal degrees of freedom of spinors. Inversions C, P, and T contain not only reflections of the basis Clifford vectors and transformations of basis spinors, but also transformations of the components of vector and spinor quantities. The research is carried out on the basis of algebraic quantum field theory using the superalgebraic representation of spinors as well as the 8-component matrix representation of spinors. We have proved that due to the presence of internal degrees of freedom of spinors, there are two vacua, the vacuum of our Universe and an alternative vacuum. The inversion operators C and T transform the vacuum into an alternative one, and therefore cannot be operators of the exact symmetry of our Universe.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1727
Author(s):  
Hayato Saigo

In the present paper, we propose a new approach to quantum fields in terms of category algebras and states on categories. We define quantum fields and their states as category algebras and states on causal categories with partial involution structures. By utilizing category algebras and states on categories instead of simply considering categories, we can directly integrate relativity as a category theoretic structure and quantumness as a noncommutative probabilistic structure. Conceptual relationships with conventional approaches to quantum fields, including Algebraic Quantum Field Theory (AQFT) and Topological Quantum Field Theory (TQFT), are also be discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stefano Gogioso ◽  
Maria E. Stasinou ◽  
Bob Coecke

We present a compositional algebraic framework to describe the evolution of quantum fields in discretised spacetimes. We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way from the causal order of events in spacetime, with no direct mention of analysis or topology. We formulate theory-independent notions of fields over causal orders in a compositional, functorial way. We draw a strong connection to Algebraic Quantum Field Theory (AQFT), using a sheaf-theoretical approach in our definition of spaces of states over regions of spacetime. We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata (QCA) from previous literature. Given the extreme flexibility of our constructions, we propose that our framework be used as the starting point for new developments in AQFT, QCA and more generally Quantum Field Theory.


Author(s):  
Daniele Colosi ◽  
◽  
Robert Oeckl ◽  
◽  
◽  
...  

We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Marco Benini ◽  
Marco Perin ◽  
Alexander Schenkel ◽  
Lukas Woike

AbstractThis paper develops a concept of 2-categorical algebraic quantum field theories (2AQFTs) that assign locally presentable linear categories to spacetimes. It is proven that ordinary AQFTs embed as a coreflective full 2-subcategory into the 2-category of 2AQFTs. Examples of 2AQFTs that do not come from ordinary AQFTs via this embedding are constructed by a local gauging construction for finite groups, which admits a physical interpretation in terms of orbifold theories. A categorification of Fredenhagen’s universal algebra is developed and also computed for simple examples of 2AQFTs.


Sign in / Sign up

Export Citation Format

Share Document