quantum operations
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 59)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-24
Author(s):  
N. Khammassi ◽  
I. Ashraf ◽  
J. V. Someren ◽  
R. Nane ◽  
A. M. Krol ◽  
...  

With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving, and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quantum processor while abstracting away hardware details is a challenging task. First, a quantum programming language should provide an intuitive programming interface to describe those algorithms. Then a compiler has to transform the program into a quantum circuit, optimize it, and map it to the target quantum processor respecting the hardware constraints such as the supported quantum operations, the qubit connectivity, and the control electronics limitations. In this article, we propose a quantum programming framework named OpenQL, which includes a high-level quantum programming language and its associated quantum compiler. We present the programming interface of OpenQL, we describe the different layers of the compiler and how we can provide portability over different qubit technologies. Our experiments show that OpenQL allows the execution of the same high-level algorithm on two different qubit technologies, namely superconducting qubits and Si-Spin qubits. Besides the executable code, OpenQL also produces an intermediate quantum assembly code, which is technology independent and can be simulated using the QX simulator.


2022 ◽  
Vol 12 (2) ◽  
pp. 759
Author(s):  
Anna M. Krol ◽  
Aritra Sarkar ◽  
Imran Ashraf ◽  
Zaid Al-Ars ◽  
Koen Bertels

Unitary decomposition is a widely used method to map quantum algorithms to an arbitrary set of quantum gates. Efficient implementation of this decomposition allows for the translation of bigger unitary gates into elementary quantum operations, which is key to executing these algorithms on existing quantum computers. The decomposition can be used as an aggressive optimization method for the whole circuit, as well as to test part of an algorithm on a quantum accelerator. For the selection and implementation of the decomposition algorithm, perfect qubits are assumed. We base our decomposition technique on Quantum Shannon Decomposition, which generates O(344n) controlled-not gates for an n-qubit input gate. In addition, we implement optimizations to take advantage of the potential underlying structure in the input or intermediate matrices, as well as to minimize the execution time of the decomposition. Comparing our implementation to Qubiter and the UniversalQCompiler (UQC), we show that our implementation generates circuits that are much shorter than those of Qubiter and not much longer than the UQC. At the same time, it is also up to 10 times as fast as Qubiter and about 500 times as fast as the UQC.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-28
Author(s):  
Titouan Carette ◽  
Emmanuel Jeandel ◽  
Simon Perdrix ◽  
Renaud Vilmart

There exist several graphical languages for quantum information processing, like quantum circuits, ZX-calculus, ZW-calculus, and so on. Each of these languages forms a †-symmetric monoidal category (†-SMC) and comes with an interpretation functor to the †-SMC of finite-dimensional Hilbert spaces. In recent years, one of the main achievements of the categorical approach to quantum mechanics has been to provide several equational theories for most of these graphical languages, making them complete for various fragments of pure quantum mechanics. We address the question of how to extend these languages beyond pure quantum mechanics to reason about mixed states and general quantum operations, i.e., completely positive maps. Intuitively, such an extension relies on the axiomatisation of a discard map that allows one to get rid of a quantum system, an operation that is not allowed in pure quantum mechanics. We introduce a new construction, the discard construction , which transforms any †-symmetric monoidal category into a symmetric monoidal category equipped with a discard map. Roughly speaking this construction consists in making any isometry causal. Using this construction, we provide an extension for several graphical languages that we prove to be complete for general quantum operations. However, this construction fails for some fringe cases like Clifford+T quantum mechanics, as the category does not have enough isometries.


Technologies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Dimitrios Ntalaperas ◽  
Nikos Konofaos

In this paper, we introduce a novel coding scheme, which allows single quantum systems to encode multi-qubit registers. This allows for more efficient use of resources and the economy in designing quantum systems. The scheme is based on the notion of encoding logical quantum states using the charge degree of freedom of the discrete energy spectrum that is formed by introducing impurities in a semiconductor material. We propose a mechanism of performing single qubit operations and controlled two-qubit operations, providing a mechanism for achieving these operations using appropriate pulses generated by Rabi oscillations. The above architecture is simulated using the Armonk single qubit quantum computer of IBM to encode two logical quantum states into the energy states of Armonk’s qubit and using custom pulses to perform one and two-qubit quantum operations.


Author(s):  
Anthony Polloreno ◽  
Kevin Young

Abstract Coherent errors in quantum operations are ubiquitous. Whether arising from spurious environmental couplings or errors in control fields, such errors can accumulate rapidly and degrade the performance of a quantum circuit significantly more than an average gate fidelity may indicate. As shown by Hastings [1] and Campbell [2], by replacing the deterministic implementation of a quantum gate with a randomized ensemble of implementations, one can dramatically suppress coherent errors. Our work begins by reformulating the results of Hastings and Campbell as a quantum optimal control problem. We then discuss a family of convex programs able to solve this problem, as well as a set of secondary objectives designed to improve the performance, implementability, and robustness of the resulting mixed quantum gates. Finally, we implement these mixed quantum gates on a superconducting qubit and discuss randomized benchmarking results consistent with a marked reduction in the coherent error. [1] M. B. Hastings, Quantum Information & Computation 17, 488 (2017). [2] E. Campbell, Physical Review A 95, 042306 (2017).


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 600
Author(s):  
Jiaqing Jiang ◽  
Kun Wang ◽  
Xin Wang

Completely positive and trace-preserving maps characterize physically implementable quantum operations. On the other hand, general linear maps, such as positive but not completely positive maps, which can not be physically implemented, are fundamental ingredients in quantum information, both in theoretical and practical perspectives. This raises the question of how well one can simulate or approximate the action of a general linear map by physically implementable operations. In this work, we introduce a systematic framework to resolve this task using the quasiprobability decomposition technique. We decompose a target linear map into a linear combination of physically implementable operations and introduce the physical implementability measure as the least amount of negative portion that the quasiprobability must pertain, which directly quantifies the cost of simulating a given map using physically implementable quantum operations. We show this measure is efficiently computable by semidefinite programs and prove several properties of this measure, such as faithfulness, additivity, and unitary invariance. We derive lower and upper bounds in terms of the Choi operator's trace norm and obtain analytic expressions for several linear maps of practical interests. Furthermore, we endow this measure with an operational meaning within the quantum error mitigation scenario: it establishes the lower bound of the sampling cost achievable via the quasiprobability decomposition technique. In particular, for parallel quantum noises, we show that global error mitigation has no advantage over local error mitigation.


2021 ◽  
Author(s):  
Shingo Kukita ◽  
Haruki Kiya ◽  
Yasushi Kondo

Abstract The precision of quantum operations is affected by unavoidable systematic errors. A composite pulse (CP), which has been well investigated in nuclear magnetic resonance (NMR), is a technique that suppresses the influence of systematic errors by replacing a single operation with a sequence of operations. In NMR, there are two typical systematic errors, Pulse Length Error (PLE) and Off Resonance Error (ORE). Recently, it was found that PLE robust CPs have a clear geometric property. In this study, we show that ORE robust CPs also have a simple geometric property, which is associated with trajectories on the Bloch sphere of the corresponding operations. We discuss the geometric property of ORE robust CPs using two examples.


2021 ◽  
Vol 7 (1) ◽  
pp. 45
Author(s):  
Alberto Manzano ◽  
Daniele Musso ◽  
Álvaro Leitao ◽  
Andrés Gómez ◽  
Carlos Vázquez ◽  
...  

We describe a general-purpose framework to implement quantum algorithms relying upon an efficient handling of arrays. The cornerstone of the framework is the direct embedding of information into quantum amplitudes, thus avoiding hampering square roots. We discuss the entire pipeline, from data loading to information extraction. Particular attention is devoted to the definition of an efficient toolkit of basic quantum operations on arrays. We comment on strong and weak points of the proposed quantum manipulations, especially in relation to an effective exploitation of quantum parallelism. We describe in detail some general-purpose routines as well as their embedding in full algorithms. Their efficiency is critically discussed both locally, at the level of the routine, and globally, at the level of the full algorithm. Finally, we comment on some applications in the quantitative finance domain.


2021 ◽  
Vol 11 (20) ◽  
pp. 9542
Author(s):  
David W. Kribs ◽  
Comfort Mintah ◽  
Michael Nathanson ◽  
Rajesh Pereira

We bring together in one place some of the main results and applications from our recent work on quantum information theory, in which we have brought techniques from operator theory, operator algebras, and graph theory for the first time to investigate the topic of distinguishability of sets of quantum states in quantum communication, with particular reference to the framework of one-way local quantum operations and classical communication (LOCC). We also derive a new graph-theoretic description of distinguishability in the case of a single-qubit sender.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012008
Author(s):  
Sanjib Dey

Abstract Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced. It plays vigorous roles in unifying the quantification methods of a requisite quantum effect as wells as in identifying protocols that optimize its usefulness in a given application in areas ranging from quantum information to computation. Moreover, the resource theories have transmuted radical quantum phenomena like coherence, nonclassicality and entanglement from being just intriguing to being helpful in executing realistic thoughts. A general quantum resource theoretical framework relies on the method of categorization of all possible quantum states into two sets, namely, the free set and the resource set. Associated with the set of free states there is a number of free quantum operations emerging from the natural constraints attributed to the corresponding physical system. Then, the task of quantum resource theory is to discover possible aspects arising from the restricted set of operations as resources. Along with the rapid growth of various resource theories corresponding to standard harmonic oscillator quantum optical states, significant advancement has been expedited along the same direction for generalized quantum optical states. Generalized quantum optical framework strives to bring in several prosperous contemporary ideas including nonlinearity, PT -symmetric non-Hermitian theories, q-deformed bosonic systems, etc., to accomplish similar but elevated objectives of the standard quantum optics and information theories. In this article, we review the developments of nonclassical resource theories of different generalized quantum optical states and their usefulness in the context of quantum information theories.


Sign in / Sign up

Export Citation Format

Share Document