scholarly journals Drawing Cone Spherical Metrics via Strebel Differentials

2018 ◽  
Vol 2020 (11) ◽  
pp. 3341-3363 ◽  
Author(s):  
Jijian Song ◽  
Yiran Cheng ◽  
Bo Li ◽  
Bin Xu

Abstract Cone spherical metrics are conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces. By using Strebel differentials as a bridge, we construct a new class of cone spherical metrics on compact Riemann surfaces by drawing on the surfaces some class of connected metric ribbon graphs.

2021 ◽  
Vol 149 ◽  
pp. 1-27
Author(s):  
Indranil Biswas ◽  
Elisabetta Colombo ◽  
Paola Frediani ◽  
Gian Pietro Pirola

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Alexander I. Bobenko ◽  
Ulrike Bücking

AbstractWe consider the class of compact Riemann surfaces which are ramified coverings of the Riemann sphere $\hat {\mathbb {C}}$ ℂ ̂ . Based on a triangulation of this covering we define discrete (multivalued) harmonic and holomorphic functions. We prove that the corresponding discrete period matrices converge to their continuous counterparts. In order to achieve an error estimate, which is linear in the maximal edge length of the triangles, we suitably adapt the triangulations in a neighborhood of every branch point. Finally, we also prove a convergence result for discrete holomorphic integrals for our adapted triangulations of the ramified covering.


2013 ◽  
Vol 31 (2) ◽  
pp. 279
Author(s):  
S. Srinivas Rau ◽  
Sudhamsh Reddy

Isospectral flat connexions are constructed for higher rank bundlesover compact Riemann surfaces


Sign in / Sign up

Export Citation Format

Share Document