scholarly journals Molecular modeling of hen egg lysozyme HEL[52-61] peptide binding to I-Ak MHC class II molecule.

1998 ◽  
Vol 10 (12) ◽  
pp. 1753-1764 ◽  
Author(s):  
P. Weber ◽  
I. Raynaud ◽  
L. Ettouati ◽  
M. C. Trescol-Biemont ◽  
P. A. Carrupt ◽  
...  
Nature ◽  
1989 ◽  
Vol 342 (6250) ◽  
pp. 682-684 ◽  
Author(s):  
S. Demotz ◽  
H. M. Grey ◽  
E. Appella ◽  
A. Sette

IUBMB Life ◽  
1999 ◽  
Vol 48 (5) ◽  
pp. 483-491 ◽  
Author(s):  
Subhashini Arimilli ◽  
Irina Astafieva ◽  
Prabha V. Mukku ◽  
Cristina Cardoso ◽  
Shrikant Deshpande ◽  
...  

Immunology ◽  
2017 ◽  
Vol 152 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Massimo Andreatta ◽  
Vanessa I. Jurtz ◽  
Thomas Kaever ◽  
Alessandro Sette ◽  
Bjoern Peters ◽  
...  

2021 ◽  
Author(s):  
Ronghui You ◽  
Wei Qu ◽  
Hiroshi Mamitsuka ◽  
Shanfeng Zhu

Computationally predicting MHC-peptide binding affinity is an important problem in immunological bioinformatics. Recent cutting-edge deep learning-based methods for this problem are unable to achieve satisfactory performance for MHC class II molecules. This is because such methods generate the input by simply concatenating the two given sequences: (the estimated binding core of) a peptide and (the pseudo sequence of) an MHC class II molecule, ignoring the biological knowledge behind the interactions of the two molecules. We thus propose a binding core-aware deep learning-based model, DeepMHCII, with binding interaction convolution layer (BICL), which allows integrating all potential binding cores (in a given peptide) and the MHC pseudo (binding) sequence, through modeling the interaction with multiple convolutional kernels. Extensive empirical experiments with four large-scale datasets demonstrate that DeepMHCII significantly outperformed four state-of-the-art methods under numerous settings, such as five-fold cross-validation, leave one molecule out, validation with independent testing sets, and binding core prediction. All these results with visualization of the predicted binding cores indicate the effectiveness and importance of properly modeling biological facts in deep learning for high performance and knowledge discovery. DeepMHCII is publicly available at https://weilab.sjtu.edu.cn/DeepMHCII/.


1989 ◽  
pp. 1137-1143 ◽  
Author(s):  
F. Sinigaglia ◽  
J. Kilgus ◽  
P. Romagnoli ◽  
M. Guttinger ◽  
J. R. L. Pink

Immunology ◽  
2018 ◽  
Vol 154 (3) ◽  
pp. 394-406 ◽  
Author(s):  
Kamilla Kjaergaard Jensen ◽  
Massimo Andreatta ◽  
Paolo Marcatili ◽  
Søren Buus ◽  
Jason A. Greenbaum ◽  
...  

Biochemistry ◽  
2000 ◽  
Vol 39 (13) ◽  
pp. 3751-3762 ◽  
Author(s):  
Ravi V. Joshi ◽  
Jennifer A. Zarutskie ◽  
Lawrence J. Stern

Sign in / Sign up

Export Citation Format

Share Document