T Cell
Recently Published Documents


(FIVE YEARS 41828)



2021 ◽  
Vol 220 (12) ◽  
Elia Zomot ◽  
Hadas Achildiev Cohen ◽  
Inbal Dagan ◽  
Ruslana Militsin ◽  
Raz Palty

Store-operated calcium entry (SOCE) through the Ca2+ release–activated Ca2+ (CRAC) channel is a central mechanism by which cells generate Ca2+ signals and mediate Ca2+-dependent gene expression. The molecular basis for CRAC channel regulation by the SOCE-associated regulatory factor (SARAF) remained insufficiently understood. Here we found that following ER Ca2+ depletion, SARAF facilitates a conformational change in the ER Ca2+ sensor STIM1 that relieves an activation constraint enforced by the STIM1 inactivation domain (ID; aa 475–483) and promotes initial activation of STIM1, its translocation to ER–plasma membrane junctions, and coupling to Orai1 channels. Following intracellular Ca2+ rise, cooperation between SARAF and the STIM1 ID controls CRAC channel slow Ca2+-dependent inactivation. We further show that in T lymphocytes, SARAF is required for proper T cell receptor evoked transcription. Taking all these data together, we uncover a dual regulatory role for SARAF during both activation and inactivation of CRAC channels and show that SARAF fine-tunes intracellular Ca2+ responses and downstream gene expression in cells.

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258443
Muhammad Hamza Tariq ◽  
Rashid Bhatti ◽  
Nida Fatima Ali ◽  
Usman Ali Ashfaq ◽  
Farah Shahid ◽  

Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1, hence, the current research work was performed to design a potential multi-epitope-based subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly, three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-allergenic and overlapping epitopes were short-listed for vaccine development. The chosen T-cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte Antigen alleles and demonstrated 95.8% coverage of the world’s population. Finally, nine Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epitopes, joint through linkers and adjuvant, were exploited to design the final MEBV construct, comprising of 382 amino acids. The developed MEBV structure showed highly antigenic properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Additionally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the strong association between MEBV construct and human pathogenic immune receptor TLR-3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clearance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon optimization and in-silico cloning was carried out to confirm its augmented expression. Results of our experiments suggested that the proposed MEBV could be a potential immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to elucidate our conclusion.

Thania Garzon ◽  
David Ortega-Tirado ◽  
Gloria Lopez-Romero ◽  
Efrain Alday ◽  
Ramón Enrique Robles-Zepeda ◽  

Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.

2021 ◽  
Mingjun Zhu ◽  
Jing Zhou ◽  
Defang Zhou ◽  
Kunmei Yang ◽  
Bin Li ◽  

CCCH-zinc finger antiviral protein (ZAP) can recognize and induce the degradation of mRNAs and proteins of certain viruses, as well as exert its antiviral activity by activating T cell. However, the mechanism of ZAP mediating T cell activation during virus infection remains unclear. Here, we found a potential function of ZAP that relieves immunosuppression of T cell induced by avian leukosis virus subgroup J (ALV-J) via a novel signaling pathway that involves norbin like protein (NLP), protein kinase C delta (PKC-δ) and nuclear factor of activated T cell (NFAT). Specifically, ZAP expression activated T cells by promoting the dephosphorylation and nuclear translocation of NFAT. Furthermore, knockdown of ZAP weakened the reactivity and antiviral response of T cells. Mechanistically, ZAP reduced PKC-δ activity by up-regulating and reactivating NLP through competitively binding with viral protein. Knockdown of NLP decreased the dephosphorylation of PKC-δ by ZAP expression. Moreover, we showed that knockdown of PKC-δ reduced the phosphorylation levels of NFAT and enhanced its nuclear translocation. Taken together, these data revealed that ZAP relieves immunosuppression caused by ALV-J and mediates T cell activation through NLP–PKC-δ–NFAT pathway. Importance The evolution of host defense system is driven synchronously in the process of resisting virus invasion. Accordingly, host innate defense factors exert effectively work in suppressing virus replication. However, it remains unclear that whether the host innate defense factors are involved in antiviral immune response against the invasion of immunosuppressive viruses. Here, we found that CCCH-type zinc finger antiviral protein (ZAP) effectively worked in resistance on immunosuppression caused by avian leukosis virus subgroup J (ALV-J), a classic immunosuppressive virus. Evidence showed that ZAP released the phosphatase activity of NLP inhibited by ALV-J and further activated NFAT by inactivating PKC-δ. This novel molecular mechanism that ZAP regulates antiviral immune response by mediating NLP–PKC-δ–NFAT pathway has greatly enriched the understanding of the functions of host innate defense factors and provided important scientific ideas and theoretical basis for the research of immunosuppressive virus and antiviral immunity.

2021 ◽  
Vol 19 (1) ◽  
Shihu Jiao ◽  
Quan Zou ◽  
Huannan Guo ◽  
Lei Shi

Abstract Background Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. Methods In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. Results Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA. Conclusions We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.

Akiko Hashimoto ◽  
Satsuki Asai ◽  
Yasuhiro Tanaka ◽  
Isaku Shinzato

Angioimmunoblastic T-cell lymphoma (AITL) can be complicated by Epstein-Barr virus (EBV)-positive B-cell lymphoma. B-cell lymphoma may develop simultaneously at the time of AITL diagnosis or after treatment for AITL. EBV-associated B-cell lymphoma can occur in nodal and extranodal sites. We report a case of EBV-positive diffuse large B-cell lymphoma (DLBCL) of the left adrenal gland that developed after treatment for AITL. The patient presented with systemic lymphadenopathy and biopsy of one lymph node showed AITL. A complete response (CR) was achieved after initial chemotherapy for AITL, but 9 months later the left adrenal gland was enlarged. The diagnosis of EBV-positive DLBCL was made based on the histopathological findings of the left adrenal gland biopsy. Thus, EBV-positive DLBCL developed after AITL CR was achieved. Multi-drug chemotherapy combined with rituximab was administered for adrenal DLBCL, but only a partial response was achieved. We confirmed that EBV-positive B-cell lymphoma developed after treatment for AITL. An adrenal primary is rare, and this is only the second case of EBV-positive B-cell lymphoma to be reported after treatment for AITL. Clinicians should keep in mind that when nodal and extranodal lesions are seen after AITL treatment, another biopsy should be performed for the accurate determination of whether these lesions indicate AITL relapse or new-onset EBV-positive B-cell lymphoma.

2021 ◽  
Vol 12 (11) ◽  
Lindsey M. Ludwig ◽  
Katrina M. Hawley ◽  
David B. Banks ◽  
Anika T. Thomas-Toth ◽  
Bruce R. Blazar ◽  

AbstractBH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day “short-term” ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day “long-term” BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.

2021 ◽  
Vol 6 (1) ◽  
Rong Tao ◽  
Lei Fan ◽  
Yongping Song ◽  
Yu Hu ◽  
Wei Zhang ◽  

AbstractThis study (ORIENT-4) aimed to assess the efficacy and safety of sintilimab, a humanized anti-PD-1 antibody, in patients with relapsed/refractory extranodal NK/T cell lymphoma (r/r ENKTL). ORIENT-4 is a multicenter, single-arm, phase 2 clinical trial (NCT03228836). Patients with r/r ENKTL who failed to at least one asparaginase-based regimen were enrolled to receive sintilimab 200 mg intravenously every 3 weeks for up to 24 months. The primary endpoint was the objective response rate (ORR) based on Lugano 2014 criteria. Twenty-eight patients with r/r ENKTL were enrolled from August 31, 2017 to February 7, 2018. Twenty-one patients (75.0%, 95% CI: 55.1–89.3%) achieved an objective response. With a median follow-up of 30.4 months, the median overall survival (OS) was not reached. The 24-month OS rate was 78.6% (95% CI, 58.4–89.8%). Most treatment-related adverse events (TRAEs) were grade 1–2 (71.4%), and the most common TRAE was decreased lymphocyte count (42.9%). Serious adverse events (SAEs) occurred in 7 (25.0%) patients, and no patient died of adverse events. Sintilimab is effective and well tolerated in patients with r/r ENKTL and could be a novel therapeutic approach for the control of ENKTL in patients.

Sign in / Sign up

Export Citation Format

Share Document