Rapid determination of doxycycline based on luciferase assay of bacterial adenosine triphosphate

1978 ◽  
Vol 4 (6) ◽  
pp. 503-508 ◽  
Author(s):  
Henning Höjer ◽  
Lennart Nilsson
Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 370 ◽  
Author(s):  
Tatsuhiro Fukuba ◽  
Takuroh Noguchi ◽  
Kei Okamura ◽  
Teruo Fujii

Total ATP (adenosine triphosphate) concentration is a useful biochemical parameter for detecting microbial biomass or biogeochemical activity anomalies in the natural environment. In this study, we describe the development and evaluation of a new version of in situ ATP analyzer improved for the continuous and quantitative determination of ATP in submarine environments. We integrated a transparent microfluidic device containing a microchannel for cell lysis and a channel for the bioluminescence L–L (luciferin–luciferase) assay with a miniature pumping unit and a photometry module for the measurement of the bioluminescence intensity. A heater and a temperature sensor were also included in the system to maintain an optimal temperature for the L–L reaction. In this study, the analyzer was evaluated in deep sea environments, reaching a depth of 200 m using a remotely operated underwater vehicle. We show that the ATP analyzer successfully operated in the deep-sea environment and accurately quantified total ATP within the concentration lower than 5 × 10−11 M.


2019 ◽  
Vol 7 (15) ◽  
pp. 2549-2556 ◽  
Author(s):  
Yaping Zhong ◽  
Tao Yi

MoS2 quantum dots were prepared as a fluorescent “turn-off–on” probe for the simple and rapid determination of adenosine triphosphate.


Author(s):  
T. Y. Tan ◽  
W. K. Tice

In studying ion implanted semiconductors and fast neutron irradiated metals, the need for characterizing small dislocation loops having diameters of a few hundred angstrom units usually arises. The weak beam imaging method is a powerful technique for analyzing these loops. Because of the large reduction in stacking fault (SF) fringe spacing at large sg, this method allows for a rapid determination of whether the loop is faulted, and, hence, whether it is a perfect or a Frank partial loop. This method was first used by Bicknell to image small faulted loops in boron implanted silicon. He explained the fringe spacing by kinematical theory, i.e., ≃l/(Sg) in the fault fringe in depth oscillation. The fault image contrast formation mechanism is, however, really more complicated.


2017 ◽  
Vol 45 (2) ◽  
pp. 455-464
Author(s):  
T.T. Xue ◽  
J. Liu ◽  
Y.B. Shen ◽  
G.Q. Liu

Sign in / Sign up

Export Citation Format

Share Document