stacking faults
Recently Published Documents


TOTAL DOCUMENTS

2441
(FIVE YEARS 220)

H-INDEX

77
(FIVE YEARS 9)

2022 ◽  
Vol 211 ◽  
pp. 114496
Author(s):  
Yanmeng Chen ◽  
Tao Guo ◽  
Xiaolu Pang ◽  
Lijie Qiao

2022 ◽  
Vol 210 ◽  
pp. 114461
Author(s):  
Fuzhou Han ◽  
Geping Li ◽  
Fusen Yuan ◽  
Yingdong Zhang ◽  
Wenbin Guo ◽  
...  

2022 ◽  
Author(s):  
Ning Wei ◽  
Ai-Qiang Shi ◽  
Zhi-Hui Li ◽  
Bing-Xian Ou ◽  
Si-Han Zhao ◽  
...  

Abstract The plastic deformation properties of cylindrical pre-void Aluminum-Magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sen Hu ◽  
Tao Fu ◽  
Qihao Liang ◽  
Shayuan Weng ◽  
Xiang Chen ◽  
...  

Stacking fault tetrahedron (SFT) is a kind of detrimental three-dimensional defect in conventional face-centered cubic (FCC) structural metals; however, its formation and anisotropic mechanical behavior in a CoCrFeNiMn high-entropy alloy (HEA) remain unclear. In this work, we first performed molecular dynamics simulations to verify the applicability of the Silcox-Hirsch mechanism in the CoCrFeNiMn HEA. The mechanical responses of the SFT to shear stress in different directions and that of the pure Ni counterpart were simulated, and the evolutions of the atomic structures of the SFTs during shear were analyzed in detail. Our results revealed that the evolution of the SFT has different patterns, including the annihilation of stacking faults, the formation and expansion of new stacking faults, and insignificant changes in stacking faults. It was found that the effects of SFT on the elastic properties of Ni and HEA are negligible. However, the introduction of SFT would reduce the critical stress, while the critical stress of the CoCrFeNiMn HEA is much less sensitive to SFT than that of Ni.


Author(s):  
Arya Ambadiyil Soman ◽  
Stuart C Wimbush ◽  
Martin W Rupich ◽  
Christian Notthoff ◽  
Patrick Kluth ◽  
...  
Keyword(s):  

Author(s):  
Juan Wei ◽  
Weixiang Kong ◽  
Xiaoliang Xiao ◽  
Wangping Xu ◽  
Rui Wang ◽  
...  

The synthesis of graphene-like structure [Fan et al., Science 372 (2021) 8527] with periodically embedded one-dimensional grain boundaries [Liu et al., Nat. Commun. 8 (2017)14924] is a strong incentive for...


2021 ◽  
Vol 118 (51) ◽  
pp. e2114167118
Author(s):  
Zongrui Pei ◽  
Siyuan Zhang ◽  
Yinkai Lei ◽  
Fan Zhang ◽  
Mingwei Chen

Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3333
Author(s):  
Andrei S. Tutantsev ◽  
Ekaterina I. Marchenko ◽  
Natalia N. Udalova ◽  
Sergey A. Fateev ◽  
Eugene A. Goodilin ◽  
...  

Layered hybrid halide perovskites (LHHPs) are an emerging type of semiconductor with a set of unique optoelectronic properties. However, the solution processing of high-quality LHHPs films with desired optical properties and phase composition is a challenging task, possibly due to the structural disorder in the LHHP phase. Nevertheless, there is still a lack of experimental evidence and understanding of the nature of the structural disorder in LHHPs and its influence on the optical properties of the material. In the current work, using 2D perovskites (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (further BA2MAn−1PbnI3n+1) with n = 1–4 as a model system, we demonstrate that deviations in LHHPs optical properties and X-ray diffraction occur due to the presence of continuous defects—Stacking Faults (SFs). Upon analyzing the experimental data and modeled XRD patterns of a possible set of stacking faults (SFs) in the BA2MAPb2I7 phase, we uncover the most plausible type of SFs, featured by the thickness variation within one perovskite slab. We also demonstrate the successful suppression of SFs formation by simple addition of BAI excess into BA2MAn−1PbnI3n+1 solutions.


Sign in / Sign up

Export Citation Format

Share Document