Nuclear medicine, pet, and radionuclide laboratories

Author(s):  
Stanley Batchelor ◽  
Bruce Walmsley

In nuclear medicine departments and radionuclide laboratories, there is extensive handling of unsealed radionuclides. This chapter provides information to aid in assessment of the level of hazard and the design of facilities to ensure adequate radiation protection of staff. It covers nuclear medicine, PET, radionuclide laboratories, and radiopharmacies, and includes factors such as local shielding, benching, washing facilities, and requirements for disposal of radioactive waste to minimize the spread of contamination. Requirements for personnel dose monitoring and contamination monitoring are discussed, and sections are included on decontamination of facilities and personnel following spills or accidents. Aspects relating to management of radioactive waste and precautions for pregnant staff working with radionuclides are included.

2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


Author(s):  
Ulrich Ehrlicher ◽  
Heinz Pauli

A multidisciplinary institute, equipped with research reactors and accelerator-driven research installations produces and, in the case of PSI, collects radioactive waste on one hand and requires material, especially for shielding purpose, on the other hand. The legislative framework for radiation protection, financial reasons and limited storage capacity strongly force Paul Scherrer Institute and comparable facilities to minimize radioactive waste. Besides free release of inactive components, recycling and re-use of low-level radioactive material in controlled areas are the best means for waste minimization. The re-use of slightly activated steel plates as a shielding material and the recycling of irradiated reactor graphite as a filling material embedded in mortar may give examples and encouragement for similar activities. Besides the advantages for radiation protection, the financial benefit can be measured in millions of dollars.


Sign in / Sign up

Export Citation Format

Share Document