Radiation protection and the staff of nuclear medicine departments

1990 ◽  
Vol 16 (11) ◽  
pp. 779-780 ◽  
Author(s):  
H. D. Evans
2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2020 ◽  
Vol 14 (2) ◽  
pp. 100-103
Author(s):  
Md Hafizur Rahman

The field of Radiology and Nuclear medicine has advanced from era of X-rays to today's modern imaging techniques, most of which use the ionizing radiation. With the benefits of better diagnosis and treatment, it has caused manifold increase in radiation exposure to the patients and the radiology and nuclear medicine personnel. Many studies done till date have clearly documented the harmful effects of ionizing radiation from radiation exposure, especially cancer. This is more important in paediatric population as their tissues are more radiosensitive, and they have more years to live. Diagnostic and therapeutic radiological procedures including nuclear medicine are integral part of modern medical practices, exposing both patients and medical staff to ionizing radiation. Without proper protective measures, this radiation causes many negative health effects. Hence, proper knowledge and awareness regarding the radiation hazards and radiation protection is mandatory for health professionals, especially the nuclear medicine and radiology professionals. International Commission on Radiation Protection (ICRP) has recommended two basic principles of radiation protection, justification of the practice and optimization of protection. Faridpur Med. Coll. J. Jul 2019;14(2): 100-103


Sign in / Sign up

Export Citation Format

Share Document