scholarly journals Deep ugrizY imaging and DEEP2/3 spectroscopy: a photometric redshift testbed for LSST and public release of data from the DEEP3 Galaxy Redshift Survey

2019 ◽  
Vol 488 (4) ◽  
pp. 4565-4584 ◽  
Author(s):  
Rongpu Zhou ◽  
Michael C Cooper ◽  
Jeffrey A Newman ◽  
Matthew L N Ashby ◽  
James Aird ◽  
...  

ABSTRACT We present catalogues of calibrated photometry and spectroscopic redshifts in the Extended Groth Strip, intended for studies of photometric redshifts (photo-z’s). The data includes ugriz photometry from Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) and Y-band photometry from the Subaru Suprime camera, as well as spectroscopic redshifts from the DEEP2, DEEP3, and 3D-HST surveys. These catalogues incorporate corrections to produce effectively matched-aperture photometry across all bands, based upon object size information available in the catalogue and Moffat profile point spread function fits. We test this catalogue with a simple machine learning-based photometric redshift algorithm based upon Random Forest regression, and find that the corrected aperture photometry leads to significant improvement in photo-z accuracy compared to the original SExtractor catalogues from CFHTLS and Subaru. The deep ugrizY photometry and spectroscopic redshifts are well suited for empirical tests of photometric redshift algorithms for LSST. The resulting catalogues are publicly available at http://d-scholarship.pitt.edu/36064/. We include a basic summary of the strategy of the DEEP3 Galaxy Redshift Survey to accompany the recent public release of DEEP3 data.

2013 ◽  
Vol 204 (2) ◽  
pp. 21 ◽  
Author(s):  
Daniel J. Matthews ◽  
Jeffrey A. Newman ◽  
Alison L. Coil ◽  
Michael C. Cooper ◽  
Stephen D. J. Gwyn

2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


2013 ◽  
Vol 26 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Huibin Wang ◽  
Rong Zhang ◽  
Zhe Chen ◽  
Lizhong Xu ◽  
Jie Shen

2020 ◽  
Vol 128 (7) ◽  
pp. 1036-1040 ◽  
Author(s):  
N. G. Stsepuro ◽  
G. K. Krasin ◽  
M. S. Kovalev ◽  
V. N. Pestereva

2014 ◽  
Author(s):  
Jingyu Yang ◽  
Bin Jiang ◽  
Jinlong Ma ◽  
Yi Sun ◽  
Ming Di

2005 ◽  
Vol 52 (12) ◽  
pp. 1695-1728 ◽  
Author(s):  
C. Van der Avoort * ◽  
J. J. M. Braat ◽  
P. Dirksen ◽  
A. J. E. M. Janssen

Sign in / Sign up

Export Citation Format

Share Document