synthetic aperture
Recently Published Documents


TOTAL DOCUMENTS

9632
(FIVE YEARS 2077)

H-INDEX

115
(FIVE YEARS 14)

2022 ◽  
Vol 14 (2) ◽  
pp. 363
Author(s):  
Nuerbiye Muhetaer ◽  
Ilyas Nurmemet ◽  
Adilai Abulaiti ◽  
Sentian Xiao ◽  
Jing Zhao

In arid and semi-arid areas, timely and effective monitoring and mapping of salt-affected areas is essential to prevent land degradation and to achieve sustainable soil management. The main objective of this study is to make full use of synthetic aperture radar (SAR) polarization technology to improve soil salinity mapping in the Keriya Oasis, Xinjiang, China. In this study, 25 polarization features are extracted from ALOS PALSAR-2 images, of which four features are selected. In addition, three soil salinity inversion models, named the RSDI1, RSDI2, and RSDI3, are proposed. The analysis and comparison results of inversion accuracy show that the overall correlation values of the RSDI1, RSDI2, and RSDI3 models are 0.63, 0.61, and 0.62, respectively. This result indicates that the radar feature space models have the potential to extract information on soil salinization in the Keriya Oasis.


2022 ◽  
Vol 22 (1) ◽  
pp. 65-70
Author(s):  
Luis Moya ◽  
Fernando Garcia ◽  
Carlos Gonzales ◽  
Miguel Diaz ◽  
Carlos Zavala ◽  
...  

Abstract. Lima, Peru's capital, has about 9.6 million inhabitants and keeps attracting more residents searching for a better life. Many citizens, without access to housing subsidies, live in informal housing and shack settlements. A typical social phenomenon in Lima is the sudden illegal occupation of areas for urban settlements. When such areas are unsafe against natural hazards, it is important to relocate such a population to avoid significant future losses. In this communication, we present an application of Sentinel-1 synthetic aperture radar (SAR) images to map the extension of a recent occupation of an area with unfavorable soil conditions against earthquakes.


Author(s):  
A. M. H. Ansar ◽  
A. H. M. Din ◽  
A. S. A. Latip ◽  
M. N. M. Reba

Abstract. Technology advancement has urged the development of Interferometric Synthetic Aperture Radar (InSAR) to be upgraded and transformed. The main contribution of the InSAR technique is that the surface deformation changes measurements can achieve up to millimetre level precision. Environmental problems such as landslides, volcanoes, earthquakes, excessive underground water production, and other phenomena can cause the earth's surface deformation. Deformation monitoring of a surface is vital as unexpected movement, and future behaviour can be detected and predicted. InSAR time series analysis, known as Persistent Scatterer Interferometry (PSI), has become an essential tool for measuring surface deformation. Therefore, this study provides a review of the PSI techniques used to measure surface deformation changes. An overview of surface deformation and the basic principles of the four techniques that have been developed from the improvement of Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), which is Small Baseline Subset (SBAS), Stanford Method for Persistent Scatterers (StaMPS), SqueeSAR and Quasi Persistent Scatterer (QPS) were summarised to perceive the ability of these techniques in monitoring surface deformation. This study also emphasises the effectiveness and restrictions of each developed technique and how they suit Malaysia conditions and environment. The future outlook for Malaysia in realising the PSI techniques for structural monitoring also discussed in this review. Finally, this review will lead to the implementation of appropriate techniques and better preparation for the country's structural development.


2022 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Jia Liu ◽  
Fengshan Ma ◽  
Guang Li ◽  
Jie Guo ◽  
Yang Wan ◽  
...  

Ground subsidence is a common geological phenomenon occurring in mining areas. As an important Chinese gold mine, Sanshandao Gold Mine has a mining history of 25 years, with remarkable ground subsidence deformation. Mining development, life security, property security and ecological protection all require comprehension of the ground subsidence characteristics and evolution in the mining area. In this study, the mining subsidence phenomenon of the Sanshandao Gold Mine was investigated and analyzed based on Persistent Scatterer Interferometry (PSI) and small baseline subset (SBAS). The SAR (synthetic aperture radar) images covering the study area were acquired by the Sentinel-1A satellite between 2018 and 2021; 54 images (between 22 February 2018 and 25 May 2021) were processed using the PSI technique and 24 images (between 11 April 2018 and 12 July 2021) were processed using the SBAS technique. In addition, GACOS (generic atmospheric correction online service) data were adopted to eliminate the atmospheric error in both kinds of data processing. The interferometric synthetic aperture radar (InSAR) results showed a basically consistent subsidence area and a similar subsidence pattern. Both InSAR results indicated that the maximum LOS (line of sight) subsidence velocity is about 49 mm/year. The main subsidence zone is situated in the main mining area, extending in the northwest and southeast directions. According to the subsidence displacement of several representative sites in the mining area, we found that the PSI result has a higher subsidence displacement value compared to the SBAS result. Mining activities were accompanied by ground subsidence in the mining area: the ground subsidence phenomenon is exacerbated by the increasing mining quantity. Temporally, the mining subsidence lags behind the increase in mining quantity by about three months. In summary, the mining area has varying degrees of ground subsidence, monitored by two reliable time-series InSAR techniques. Further study of the subsidence mechanism is necessary to forecast ground subsidence and instruct mining activities.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Tsu Chiang Lei ◽  
Shiuan Wan ◽  
You Cheng Wu ◽  
Hsin-Ping Wang ◽  
Chia-Wen Hsieh

This study employed a data fusion method to extract the high-similarity time series feature index of a dataset through the integration of MS (Multi-Spectrum) and SAR (Synthetic Aperture Radar) images. The farmlands are divided into small pieces that consider the different behaviors of farmers for their planting contents in Taiwan. Hence, the conventional image classification process cannot produce good outcomes. The crop phenological information will be a core factor to multi-period image data. Accordingly, the study intends to resolve the previous problem by using three different SPOT6 satellite images and nine Sentinel-1A synthetic aperture radar images, which were used to calculate features such as texture and indicator information, in 2019. Considering that a Dynamic Time Warping (DTW) index (i) can integrate different image data sources, (ii) can integrate data of different lengths, and (iii) can generate information with time characteristics, this type of index can resolve certain classification problems with long-term crop classification and monitoring. More specifically, this study used the time series data analysis of DTW to produce “multi-scale time series feature similarity indicators”. We used three approaches (Support Vector Machine, Neural Network, and Decision Tree) to classify paddy patches into two groups: (a) the first group did not apply a DTW index, and (b) the second group extracted conflict predicted data from (a) to apply a DTW index. The outcomes from the second group performed better than the first group in regard to overall accuracy (OA) and kappa. Among those classifiers, the Neural Network approach had the largest improvement of OA and kappa from 89.51, 0.66 to 92.63, 0.74, respectively. The rest of the two classifiers also showed progress. The best performance of classification results was obtained from the Decision Tree of 94.71, 0.81. Observing the outcomes, the interference effects of the image were resolved successfully by various image problems using the spectral image and radar image for paddy rice classification. The overall accuracy and kappa showed improvement, and the maximum kappa was enhanced by about 8%. The classification performance was improved by considering the DTW index.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 96
Author(s):  
Shujun Liu ◽  
Ningjie Pu ◽  
Jianxin Cao ◽  
Kui Zhang

Synthetic aperture radar (SAR) images are inherently degraded by speckle noise caused by coherent imaging, which may affect the performance of the subsequent image analysis task. To resolve this problem, this article proposes an integrated SAR image despeckling model based on dictionary learning and multi-weighted sparse coding. First, the dictionary is trained by groups composed of similar image patches, which have the same structural features. An effective orthogonal dictionary with high sparse representation ability is realized by introducing a properly tight frame. Furthermore, the data-fidelity term and regularization terms are constrained by weighting factors. The weighted sparse representation model not only fully utilizes the interblock relevance but also reflects the importance of various structural groups in despeckling processing. The proposed model is implemented with fast and effective solving steps that simultaneously perform orthogonal dictionary learning, weight parameter updating, sparse coding, and image reconstruction. The solving steps are designed using the alternative minimization method. Finally, the speckles are further suppressed by iterative regularization methods. In a comparison study with existing methods, our method demonstrated state-of-the-art performance in suppressing speckle noise and protecting the image texture details.


Sign in / Sign up

Export Citation Format

Share Document