The mismatch negativity (MMN): An introduction

2019 ◽  
pp. 1-40
Author(s):  
Risto Näätänen ◽  
Teija Kujala ◽  
Gregory Light

In this chapter, the mismatch negativity (MMN) event-related brain potential is introduced. MMN is an automatic response to any sound change generated primarily in auditory and frontal cortices, reflecting auditory change detection and discrimination accuracy. Analogous responses have also been found in other sensory modalities. MMN can, for example, index improvement of sound discrimination as a function of learning or recovery. Consistent with this, MMN appears to index general brain plasticity, essential for learning and memory, and to reflect different cognitive brain disorders. It is elicited irrespective of the direction of attention, being, therefore, a feasible tool for investigating even inattentive participants, such as sleeping infants or comatose patients.

2005 ◽  
Vol 17 (11) ◽  
pp. 1704-1713 ◽  
Author(s):  
Thomas Jacobsen ◽  
Erich Schröger ◽  
István Winkler ◽  
János Horváth

The effects of familiarity on auditory change detection on the basis of auditory sensory memory representations were investigated by presenting oddball sequences of sounds while participants ignored the auditory stimuli. Stimulus sequences were composed of sounds that were familiar and sounds that were made unfamiliar by playing the same sounds backward. The roles of frequently presented stimuli (standards) and infrequently presented ones (deviants) were fully crossed. Deviants elicited the mismatch negativity component of the event-related brain potential. We found an enhancement in detecting changes when deviant sounds appeared among familiar standard sounds compared when they were delivered among unfamiliar standards. Familiarity with the deviant sounds also enhanced the change-detection process. We suggest that tuning to familiar items sets up preparatory processes that affect change detection in familiar sound sequences.


2011 ◽  
Vol 81 (3) ◽  
pp. 312-316 ◽  
Author(s):  
Marta Bortoletto ◽  
Giuliano De Min Tona ◽  
Simona Scozzari ◽  
Simone Sarasso ◽  
Luciano Stegagno

2012 ◽  
Vol 123 (7) ◽  
pp. 1309-1318 ◽  
Author(s):  
M.J.W. Van der Molen ◽  
M.W. Van der Molen ◽  
K.R. Ridderinkhof ◽  
B.C.J. Hamel ◽  
L.M.G. Curfs ◽  
...  

2004 ◽  
Vol 15 (5) ◽  
pp. 545-551 ◽  
Author(s):  
Sophie Molholm ◽  
Antigona Martinez ◽  
Walter Ritter ◽  
Daniel C. Javitt ◽  
John J. Foxe

2019 ◽  
Vol 287 ◽  
pp. 1-9 ◽  
Author(s):  
Derek J. Fisher ◽  
Erica D. Rudolph ◽  
Emma M.L. Ells ◽  
Verner J. Knott ◽  
Alain Labelle ◽  
...  

2020 ◽  
Vol 45 (7) ◽  
pp. 523-531
Author(s):  
Sara Touj ◽  
Samie Cloutier ◽  
Amel Jemâa ◽  
Mathieu Piché ◽  
Gilles Bronchti ◽  
...  

Abstract It is well established that early blindness results in enhancement of the remaining nonvisual sensory modalities accompanied by functional and anatomical brain plasticity. While auditory and tactile functions have been largely investigated, the results regarding olfactory functions remained less explored and less consistent. In the present study, we investigated olfactory function in blind mice using 3 tests: the buried food test, the olfactory threshold test, and the olfactory performance test. The results indicated better performance of blind mice in the buried food test and odor performance test while there was no difference in the olfactory threshold test. Using histological measurements, we also investigated if there was anatomical plasticity in the olfactory bulbs (OB), the most salient site for olfactory processing. The results indicated a larger volume of the OB driven by larger glomerular and granular layers in blind mice compared with sighted mice. Structural plasticity in the OB may underlie the enhanced olfactory performance in blind mice.


Neuroscience ◽  
2017 ◽  
Vol 355 ◽  
pp. 141-148 ◽  
Author(s):  
Marcus Heldmann ◽  
Thomas F. Münte ◽  
Lejla Paracka ◽  
Frederike Beyer ◽  
Norbert Brüggemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document