brain plasticity
Recently Published Documents


TOTAL DOCUMENTS

1361
(FIVE YEARS 438)

H-INDEX

87
(FIVE YEARS 10)

2022 ◽  
Vol 11 (2) ◽  
pp. 445
Author(s):  
Yumiko Ishizawa

Perioperative neurocognitive disorder (PND) is a growing concern, affecting several million elderly patients each year in the United States, but strategies for its effective prevention have not yet been established. Humeidan et al. recently demonstrated that preoperative brain exercise resulted in a decrease in postoperative delirium incidence in elderly surgical patients, suggesting the potential of presurgical cognitive optimization to improve postoperative cognitive outcomes. This brief review summarizes the current knowledge regarding preoperative cognitive optimization and highlights landmark studies, as well as current ongoing studies, as the field is rapidly growing. This review further discusses the benefit of cognitive training in non-surgical elderly populations and the role of cognitive training in patients with preexisting cognitive impairment or dementia. The review also examines preclinical evidence in support of cognitive training, which can facilitate understanding of brain plasticity and the pathophysiology of PND. The literature suggests positive impacts of presurgical cognitive optimization, but further studies are encouraged to establish effective cognitive training programs for elderly presurgical patients.


2022 ◽  
Author(s):  
Alberto Lazari ◽  
Piergiorgio Salvan ◽  
Michiel Cottaar ◽  
Daniel Papp ◽  
Matthew FS Rushworth ◽  
...  

Synaptic plasticity is required for learning and follows Hebb's Rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain's white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb's Rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes, and can be observed in human white matter fibers.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Alla B. Salmina ◽  
Natalia A. Malinovskaya ◽  
Andrey V. Morgun ◽  
Elena D. Khilazheva ◽  
Yulia A. Uspenskaya ◽  
...  

Abstract The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood–brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


2022 ◽  
pp. 35-52
Author(s):  
Giulia Avvenuti ◽  
Giulio Bernardi
Keyword(s):  

2022 ◽  
pp. 91-104
Author(s):  
Paolo Manganotti ◽  
Miloš Ajčević ◽  
Alex Buoite Stella

2021 ◽  
Author(s):  
Gargi Bansal ◽  
Anand Pratap Singh

The review inspects the empirical literature on the efficacy of computer-assisted cognitive re-training of children with Specific learning disabilities (SLD). SLD children are characterized by an average and above-average IQ but there exist significant deficits in their language processing skills. Cognitive re-training is a training process that serves as remediation for people with underdeveloped cognitive abilities through intensive practice. It utilizes the principle of “brain plasticity” and is an endeavor to strengthen the deficit cognitive abilities of people by practicing various well-defined tasks and exercises. Cognitive re-training can be provided in both ways manualized or computerized. Computer-assisted re-training seems more interesting, innovative, is multisensory and motivating for children. This research review aims to put together the primary research done in the area and tries to evaluate the effectiveness of using such intervention on children with a specific learning disability. In a country like India which has a vast & widespread population reaching out to children with a specific learning disability by using manualized intervention seems a distant reality, together with a handful of trained therapists working in the field. Keeping in view such circumstances there is an urgent need to identify ways which can be used as an intervention for the mass population and in remote areas of the country. In doing so, this review also attempts to lay a base and explore the possibility of utilizing this novel way of providing interventions to children with Specific learning disability.


Author(s):  
V. B. Puetz ◽  
E. Viding ◽  
E. A. Maguire ◽  
A. Mechelli ◽  
D. Armbruster-Genç ◽  
...  

Abstract Altered autobiographical memory (ABM) processing characterizes some individuals with experiences of childhood maltreatment. This fMRI study of ABM processing evaluated potential developmental plasticity in neural functioning following maltreatment. Adolescents with (N = 19; MT group) and without (N = 18; Non-MT group) documented childhood maltreatment recalled specific ABMs in response to emotionally valenced cue words during fMRI at baseline (age 12.71 ± 1.48) and follow-up (14.88 ± 1.53 years). Psychological assessments were collected at both timepoints. Longitudinal analyses were carried out with BOLD signal changes during ABM recall and psychopathology to investigate change over time. In both groups there was relative stability of the ABM brain network, with some developmental maturational changes observed in cortical midline structures (ventromedial PFC (vmPFC), posterior cingulate cortex (pCC), and retrosplenial cortex (rSC). Significantly increased activation of the right rSC was observed only in the MT group, which was associated with improved psychological functioning. Baseline group differences in relation to hippocampal functioning, were not detected at follow-up. This study provides preliminary empirical evidence of functional developmental plasticity in children with documented maltreatment experience using fMRI. This suggests that altered patterns of brain function, associated with maltreatment experience, are not fixed and may reflect the potential to track a neural basis of resilience.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rafael Casas ◽  
Melissa Sandison ◽  
Diane Nichols ◽  
Kaelin Martin ◽  
Khue Phan ◽  
...  

We have developed a passive and lightweight wearable hand exoskeleton (HandSOME II) that improves range of motion and functional task practice in laboratory testing. For this longitudinal study, we recruited 15 individuals with chronic stroke and asked them to use the device at home for 1.5 h per weekday for 8 weeks. Subjects visited the clinic once per week to report progress and troubleshoot problems. Subjects were then given the HandSOME II for the next 3 months, and asked to continue to use it, but without any scheduled contact with the project team. Clinical evaluations and biomechanical testing was performed before and after the 8 week intervention and at the 3 month followup. EEG measures were taken before and after the 8 weeks of training to examine any recovery associated brain reorganization. Ten subjects completed the study. After 8 weeks of training, functional ability (Action Research Arm Test), flexor tone (Modified Ashworth Test), and real world use of the impaired limb (Motor Activity Log) improved significantly (p < 0.05). Gains in real world use were retained at the 3-month followup (p = 0.005). At both post-training and followup time points, biomechanical testing found significant gains in finger ROM and hand displacement in a reaching task (p < 0.05). Baseline functional connectivity correlated with gains in motor function, while changes in EEG functional connectivity paralleled changes in motor recovery. HandSOME II is a low-cost, home-based intervention that elicits brain plasticity and can improve functional motor outcomes in the chronic stroke population.


Author(s):  
Wei Li ◽  
Xin Kong ◽  
Jun Ma

Objectives: To evaluate the effects of combat sports on cerebellar function in adolescents based on resting-state functional MRI (rs-fMRI). Methods: Rs-fMRI data were acquired from the combat sports (CS) group (n = 32, aged 14.2 ± 1.1 years) and non-athlete healthy control (HC) group (n = 29, aged 14.8 ± 0.9 years). The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) within the cerebellum was calculated and then compared between the two groups. Results: None of these participants displayed intracranial lesions on conventional MRI and microhemorrhages on SWI. Compared with the HC group, the CS group showed decreased ALFF and ReHo in the bilateral cerebellum, mainly located in the inferior regions of the cerebellum (Cerebellum_8, Cerebellum_9, Cerebellum_7b, and Cerebellum_Crus2). While increased FC was found within the cerebellar network, mainly located in the superior regions near the midline (bilateral Cerebellum_6, Cerebellum_Crus1_R, and Vermis_6). There is no inter network FC change between the CEN and other networks. Conclusion: This study confirmed extensive effects of combat sports on cerebellar rs-fMRI in adolescents, which could enhance the understanding of cerebellar regulatory mechanism under combat conditions, and provide additional information about cerebellar protective inhibition and compensatory adaptation. Advances in knowledge: Adolescent combat participants are an ideal model to study training-induced brain plasticity and vulnerability. Relative to task-related fMRI, rs-fMRI can bring more information about cerebellar regulation and explain the Central Governor Model more comprehensively.


2021 ◽  
Vol 28 ◽  
Author(s):  
Laura Palagini ◽  
Pierre Alexis Geoffroy ◽  
Dieter Riemann

Introduction: Since insomnia and disturbed sleep may affect neuroplasticity, we aimed at reviewing their potential role as markers of disrupted neuroplasticity involved in mood disorders. Method: We performed a systematic review, according to PRIMA, on PubMed, PsycINFO and Embase electronic databases for literature regarding mood disorders, insomnia, sleep loss/deprivation in relation to different pathways involved in the impairment of neuroplasticity in mood disorders such as 1] alterations in neurodevelopment 2] activation of the stress system 3] neuroinflammation 4] neurodegeneration/neuroprogression, 4] deficit in neuroprotection. Results: Sixty-five articles were analyzed and a narrative/ theoretical review was conducted. Studies showed that insomnia, sleep loss and sleep deprivation might impair brain plasticity of those areas involved in mood regulation throughout different pathways. Insomnia and disrupted sleep may act as neurobiological stressors that by over-activating the stress and inflammatory systems may affect neural plasticity causing neuronal damage. In addition, disturbed sleep may favor a deficit in neuroprotection hence contributing to impaired neuroplasticity. Conclusions: Insomnia and disturbed sleep may play a role as markers of alteration in brain plasticity in mood disorders. Assessing and targeting insomnia in the clinical practice may potentially play a neuroprotective role, contributing to “repairing” alterations in neuroplasticity or to the functional recovery of those areas involved in mood and emotion regulation.


Sign in / Sign up

Export Citation Format

Share Document