Heteromeric Nicotinic Inhibition by Isoflurane Does Not Mediate MAC or Loss of Righting Reflex

2002 ◽  
Vol 97 (4) ◽  
pp. 902-905 ◽  
Author(s):  
Pamela Flood ◽  
James M. Sonner ◽  
Diane Gong ◽  
Kristen M. Coates

Background Neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated in the mechanism of action of isoflurane as they are inhibited at subanesthetic concentrations. Despite clear evidence for nicotinic inhibition at relevant isoflurane concentrations, it is unclear what behavioral result ensues, if any. Methods The authors have modeled two behaviors common to all general anesthetics, immobility and hypnosis, as minimum alveolar concentration that prevents movement in response to a supramaximal stimulus (MAC) and loss of righting reflex (LORR). They have tested the ability of nicotinic pharmacologic modulators and congenital absence of most heteromeric nAChRs to affect concentration of isoflurane required for these behaviors. Results Neither mecamylamine, 5 mg/kg, nor chlorisondamine, 10 mg/kg, affected isoflurane MAC. Nicotine caused a small decrease in MAC. None of the above agents had any effect on the concentration of isoflurane required for LORR. Mice genetically engineered to lack the beta 2 nicotinic gene product were not different in MAC or LORR from controls. Conclusions Nicotinic antagonists do not cause MAC or LORR. Inhibition of nicotinic acetylcholine receptors by isoflurane is not likely related to its ability to provide immobility and hypnosis in a surgical setting. This is perhaps not surprising as the inhibition of nAChRs in vitro is complete at an isoflurane concentration equal to one half of MAC. Nicotinic inhibition may, however, be involved in anesthetic behaviors such as amnesia and analgesia, which occur at lower anesthetic concentrations.

2012 ◽  
Vol 4 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Ivan Tochitsky ◽  
Matthew R. Banghart ◽  
Alexandre Mourot ◽  
Jennifer Z. Yao ◽  
Benjamin Gaub ◽  
...  

2007 ◽  
Vol 107 (2) ◽  
pp. 264-272 ◽  
Author(s):  
Michael T. Alkire ◽  
Jayme R. McReynolds ◽  
Emily L. Hahn ◽  
Akash N. Trivedi

Background Neuronal nicotinic acetylcholine receptors are both potently inhibited by anesthetics and densely expressed in the thalamus. Brain imaging shows that thalamic activity suppression accompanies anesthetic-induced unconsciousness. Therefore, anesthetic-induced unconsciousness may involve direct antagonism of thalamic nicotinic receptors. The authors test this by separately attempting to block or enhance anesthetic-induced loss of righting in rats using intrathalamic microinjections of nicotine or its antagonist. Methods Rats were implanted with a cannula aimed at the thalamus or control locations. A week later, loss of righting was induced using sevoflurane (1.4 +/- 0.2%). A dose-parameter study (n = 35) first identified an optimal intrathalamic nicotine dose associated with arousal. Subsequently, this dose was used to pinpoint the thalamic site mediating the arousal response (n = 107). Finally, sevoflurane righting dose and response specificity were assessed after blocking nicotinic channels with intrathalamic mecamylamine pretreatment (n = 8) before nicotine challenge. Results Nicotine (150 microg/0.5 microl over 1 min) was the optimal arousal dose, because lower doses (75 microg) were ineffective and higher doses (300 microg) often caused seizures. Nicotine temporarily restored righting and mobility in animals when microinjections involved the central medial thalamus (P < 0.0001, chi-square). Righting occurred despite continued sevoflurane administration. Intrathalamic mecamylamine pretreatment did not lower the sevoflurane dose associated with loss of righting, but prevented the nicotine arousal response. Conclusions The reversal of unconsciousness found here with intrathalamic microinfusion of nicotine suggests that suppression of the midline thalamic cholinergic arousal system is part of the mechanism by which anesthetics produce unconsciousness.


Sign in / Sign up

Export Citation Format

Share Document