Functional Properties
Recently Published Documents





Behdad Shokrollahi Yancheshmeh ◽  
Leila Monjazeb Marvdashti ◽  
Alireza Emadi ◽  
Anna Abdolshahi ◽  
Arezoo Ebrahimi ◽  

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 165
Ang Li ◽  
Lei Chen ◽  
Weijie Zhou ◽  
Junhui Pan ◽  
Deming Gong ◽  

Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The results of fluorescence quenching suggested that both Bai and Chr interacted with BLG to form complexes with the binding constant of the magnitude of 105 L·mol−1. The binding affinity between BLG and Bai was stronger than that of Chr due to more hydrogen bond formation in Bai–BLG binding. The existence of Bai or Chr induced a looser conformation of BLG, but Chr had a greater effect on the secondary structure of BLG. The surface hydrophobicity and free sulfhydryl group content of BLG lessened due to the presence of the two flavonoids. Molecular docking was performed at the binding site of Bai or Chr located in the surface of BLG, and hydrophobic interaction and hydrogen bond actuated the formation of the Bai/Chr–BLG complex. Molecular dynamics simulation verified that the combination of Chr and BLG decreased the stability of BLG, while Bai had little effect on it. Moreover, the foaming properties of BLG got better in the presence of the two flavonoids compounds and Bai improved its emulsification stability of the protein, but Chr had the opposite effect. This work provides a new idea for the development of novel dietary supplements using functional proteins as flavonoid delivery vectors.

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 172
Chang Liu ◽  
Hejing Yan ◽  
Suwen Liu ◽  
Xuedong Chang

Chestnut is popular worldwide for its unique flavor, high eating quality and nutrition. Here, we evaluated the influence of phosphorylation and acetylation on the structural, physicochemical and functional properties of chestnut starch. Scanning electron micrographs showed the agglomeration of starch granules and the appearance of numerous dents on the starch granule surface under phosphorylation and acetylation. X-ray diffractograms confirmed that the modification treatments did not affect the C-type crystal pattern, but reduced the relative crystallinity of the chestnut starch, particularly phosphorylation. Moreover, modification improved the paste transparency of the starch. Differential scanning calorimeter analysis revealed that the gelatinization temperature and enthalpy of the starch decreased with the increasing substitution degree, particularly in phosphorylated starch. The Rapid Visco Analyser analysis demonstrated that phosphorylation could greatly improve the pasting properties of chestnut starch. In addition, phosphorylated and acetylated starch had a smaller amount of slowly digested starch and a larger amount of resistant starch relative to native chestnut starch. In conclusion, the functional and physicochemical properties of chestnut starch can be significantly improved through phosphorylation and acetylation, demonstrating its great application potential as a food additive.

2022 ◽  
Vol 951 (1) ◽  
pp. 012076
I Sulaiman ◽  
D Hasni

Abstract Coffee is a non-alcoholic beverage that is consumed globally due to its specific flavour and functional properties. Nowadays coffee is diversified based on its coffee varieties, brewing methods, and bean processing techniques. Wine coffee is a commercial name for fermented coffee, a new coffee diversification product. Wine coffee is produced by fermenting coffee cherries for 30 to 60 days. As a new product, the process is not well studied. This research aims to explore the microorganisms’ activity and its profile growth during 30 days of fermentation. The documentation of pH and temperature, and microbial sampling during coffee cherry fermentation were conducted seven times, started at 0 days; 2 days; 4 days; 6 days; 8 days; 10 days; 12 days; 14 days; 16 days; 20 and 30 days. The results showed that pH decreases and temperature increases during fermentation. pH started from 5.0 and down to 3.9 when fermentation is terminated after 30 days, whilst the temperature slightly changes from 25°C to 30°C. The microorganism’s population shows the presence of yeast, lactic acid (LAB) and acetic acid bacteria (AAB) in wine coffee production. The yeast population increases in the mid fermentation as the cherries are damaged and provide suitable nutrition for the yeast. LAB also co-exists at a similar stage. Further research should be done, especially to understand the interaction mechanism between yeast and yeast, yeast and LAB, and yeast and AAB.

2022 ◽  
Vol 334 ◽  
pp. 04020
Marwa Ouerghemmi ◽  
Christophe Carral ◽  
Patrice Mele

One of the most important components of PEMFC is the gas diffusion layer (GDL), owing to its key role in the reactant diffusion, water management, thermal and electron conductivity. Therefore, the GDL must have an optimal stiffness to ensure these transport functions during numerous hydrothermal cycles. The understanding of its behavior is still a remaining issue. Its orthotropic mechanical behavior requires a series of mechanical characterizations in the plane of the fibers and out of plane. In addition, there are different manufacturing processes for GDL in sheet or roll form to optimize its functional properties. A macro porous layer (MPL) or different PTFE contents might be added by different manufacturers to optimize its performance. In this study, we have performed several mechanical tests differentiating between in plane and out of plane properties in order to characterize different GDLs available on the market. All of the experimental work has been done in the machine (MD) and cross machine direction (CD) according to the fiber orientation. The different GDL types were then classified into categories presenting similar mechanical response.

2021 ◽  
Vol 50 (12) ◽  
pp. 3603-3615
Norashikin Mohd Zain ◽  
Maaruf Abd. Ghani ◽  
Zalifah Mohd Kasim ◽  
Haslaniza Hashim

Chia seeds are a healthy source of omega-3 fatty acids and dietary fibre. The effects of different drying methods (freeze-drying and oven-drying) on the functional properties (water holding capacity, oil holding capacity and colour analysis) and physicochemical characteristics (scanning electron microscopy) of chia mucilage powder (Salvia hispanica L.) including comparison with xanthan gum, hydroxypropyl methylcellulose (HPMC), and arabic gum were investigated. Chia mucilage dried in a freeze dryer (FD) showed significantly higher (p<0.05) values of water holding and oil holding capacities compared to chia mucilage dried in air convection heat oven (ACHO), xanthan gum, HPMC and arabic gum. It also showed a higher L* value (lightness) than ACHO, HPMC, and xanthan gum but lower values of a*, b*, c*, BI, and ΔE than ACHO and xanthan gum. The morphology of FD is smaller, more uniform in size, with a fine fibrous relative structure compared to ACHO. FD is a novel mucilage that could potentially be used as a functional and environmentally friendly hydrocolloid for human consumption and significantly better than commercial hydrocolloids. These results can also help to select successful drying methods for food products based on their functional and physicochemical characteristics.

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 268
Pawel Pawlus ◽  
Rafal Reizer ◽  
Wieslaw Żelasko

Two-process random textures seem to present better functional properties than one-process surfaces. There are many random two-process textures. Plateau-honed cylinder surfaces are the most popular example. Two-process surfaces are also created during the initial periods of life of machined elements. However, knowledge about two-process textures measurement, modeling, and behavior is low. Two-process surfaces are very sensitive to measurement errors. It is very difficult to model them. Special methods of their characterization were created. Their functional significance was studied in a small number of publications. In this paper, measurement, characterization, and modeling of two-process textures were presented. The functional impact of them was analyzed, the effects on contact mechanics and friction and wear were mainly studied. Finally, considerations of future challenges were addressed. The nature of two-process random textures should be taken into account during analyses of properties of machined elements. The plateau part decides about the asperity contact, and the valley portion governs the hydrodynamic lubrication.

Sign in / Sign up

Export Citation Format

Share Document