A Wound Caused by a Small Alkaline Cell (Button Battery) Under a Plaster Cast: Report of a Case

2009 ◽  
Vol 30 (2) ◽  
pp. 355-357 ◽  
Author(s):  
Steven L. Moulton ◽  
Lawrence H. Thaller ◽  
C Edward Hartford
1989 ◽  
Vol 28 (04) ◽  
pp. 124-128 ◽  
Author(s):  
J. Spitz ◽  
N. Clemenz ◽  
K. Tittel ◽  
H. Weigand

In addition to its established oncological indications the sensitivity of bone scintigraphy is of steadily increasing significance in traumatology. Inactivity- induced osteoporosis plays a major role during the immobilization period in the plaster cast. In the region of the joints remodelling intensity may reach such a high level that the non-injured bone shows a higher rate of accumulation than the fracture. This process already begins between the third and fourth week of immobilization. The highest uptake is found after fracture of the scaphoid bone at the end of twelve weeks of immobilization. Control scintigraphies at intervals of several days are indicated to differentiate between various clinical conditions (pseudoarthrosis, activated osteoarthrosis, algodystrophy in case of doubtful x-ray results).


Author(s):  
Rishabh Sethia ◽  
Hannah Gibbs ◽  
Ian N. Jacobs ◽  
James S. Reilly ◽  
Keith Rhoades ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Muhannad Farhan ◽  
Joyce Zhanzi Wang ◽  
Paula Bray ◽  
Joshua Burns ◽  
Tegan L. Cheng

Abstract Background In the production of ankle-foot orthoses and in-shoe foot orthoses, lower leg morphology is traditionally captured using a plaster cast or foam impression box. Plaster-based processes are a time-consuming and labour-intensive fabrication method. 3D scanning is a promising alternative, however how these new technologies compare with traditional methods is unclear. The aim of this systematic review was to compare the speed, accuracy and reliability of 3D scanning with traditional methods of capturing foot and ankle morphology for fabricating orthoses. Methods PRISMA guidelines were followed and electronic databases were searched to March 2020 using keywords related to 3D scanning technologies and traditional foot and ankle morphology capture methods. Studies of any design from healthy or clinical populations of any age and gender were eligible for inclusion. Studies must have compared 3D scanning to another form of capturing morphology of the foot and/or ankle. Data relating to speed, accuracy and reliability as well as study design, 3D scanner specifications and comparative capture techniques were extracted by two authors (M.F. and Z.W.). Study quality was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) and Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN). Results Six articles met the inclusion criteria, whereby 3D scanning was compared to five traditional methods (plaster cast, foam impression box, ink footprint, digital footprint and clinical assessment). The quality of study outcomes was rated low to moderate (GRADE) and doubtful to adequate (COSMIN). Compared to traditional methods, 3D scanning appeared to be faster than casting (2 to 11 min vs 11 to 16 min). Inter-rater reliability (ICC 0.18–0.99) and intra-rater reliability (ICCs 0.25–0.99) were highly variable for both 3D scanning and traditional techniques, with higher agreement generally dependent on the foot parameter measured. Conclusions The quality and quantity of literature comparing the speed, accuracy and reliability of 3D scanning with traditional methods of capturing foot and ankle morphology is low. 3D scanning appears to be faster especially for experienced users, however accuracy and reliability between methods is variable.


2021 ◽  
Vol 25 ◽  
pp. 101140
Author(s):  
Nurul Syuhadah Hasny ◽  
Faizah Abdul Rahim ◽  
Irfan Mohamad
Keyword(s):  

2000 ◽  
Vol 85 (2) ◽  
pp. 190-202 ◽  
Author(s):  
J.J. Kriegsmann ◽  
H.Y. Cheh
Keyword(s):  

2014 ◽  
Vol 129 (1) ◽  
pp. 93-94 ◽  
Author(s):  
W Nivatvongs ◽  
M Ghabour ◽  
G Dhanasekar

AbstractBackground:Removing a button battery from the ear can be a tricky and challenging procedure.Method and Results:We describe the innovative use of a magnetic telescopic rod to successfully remove a button battery from the ear canal of a nine-year-old boy.Conclusion:We propose that this equipment should be available in ENT clinics and operating theatres to be used for removing foreign bodies made from ferrous materials.


Sign in / Sign up

Export Citation Format

Share Document