mitigation strategy
Recently Published Documents


TOTAL DOCUMENTS

768
(FIVE YEARS 367)

H-INDEX

30
(FIVE YEARS 9)

2022 ◽  
Vol 6 (1) ◽  
pp. 1-24
Author(s):  
Liuwang Kang ◽  
Haiying Shen

For a modern vehicle, if the sensor in a vehicle anti-lock braking system (ABS) or controller area network (CAN) bus is attacked during a brake process, the vehicle will lose driving direction control and the driver’s life will be highly threatened. However, current methods for detecting attacks are not sufficiently accurate, and no method can provide attack mitigation. To ensure vehicle ABS security, we propose an attack detection method to accurately detect both sensor attack (SA) and CAN bus attack in a vehicle ABS, and an attack mitigation strategy to mitigate their negative effects on the vehicle ABS. In our attack detection method, we build a vehicle state space equation that considers the real-time road friction coefficient to predict vehicle states (i.e., wheel speed and longitudinal brake force) with their previous values. Based on sets of historical measured vehicle states, we develop a search algorithm to find out attack changes (vehicle state changes because of attack) by minimizing errors between the predicted vehicle states and the measured vehicle states. In our attack mitigation strategy, attack changes are subtracted from the measured vehicle states to generate correct vehicle states for a vehicle ABS. We conducted the first real SA experiments to show how a magnet affects sensor readings. Our simulation results demonstrate that our attack detection method can detect SA and CAN bus attack more accurately compared with existing methods, and also that our attack mitigation strategy almost eliminates the attack’s effects on a vehicle ABS.


Author(s):  
Nicholas Mazzoleni ◽  
Jeong Yong Kim ◽  
Matthew Bryant

Abstract Fluidic artificial muscles (FAMs) are a popular actuation choice due to their compliant nature and high force-to-weight ratio. Variable recruitment is a bio-inspired actuation strategy in which multiple FAMs are combined into motor units that can be pressurized sequentially according to load demand. In a traditional ‘fixed-end’ variable recruitment FAM bundle, inactive units and activated units that are past free strain will compress and buckle outward, resulting in resistive forces that reduce overall bundle force output, increase spatial envelope, and reduce operational life. This paper investigates the use of inextensible tendons as a mitigation strategy for preventing resistive forces and outward buckling of inactive and submaximally activated motor units in a variable recruitment FAM bundle. A traditional analytical fixed-end variable recruitment FAM bundle model is modified to account for tendons, and the force-strain spaces of the two configurations are compared while keeping the overall bundle length constant. Actuation efficiency for the two configurations is compared for two different cases: one case in which the radii of all FAMs within the bundle are equivalent, and one case in which the bundles are sized to consume the same amount of working fluidvolume at maximum contraction. Efficiency benefits can be found for either configuration for different locations within their shared force-strain space, so depending on the loading requirements, one configuration may be more efficient than the other. Additionally, a study is performed to quantify the increase in spatial envelope caused by the outward buckling of inactive or low-pressure motor units. It was found that at full activation of recruitment states 1, 2, and 3, the tendoned configuration has a significantly higher volumetric energy density than the fixed-end configuration, indicating that the tendoned configuration has more actuation potential for a given spatial envelope. Overall, the results show that using a resistive force mitigation strategy such as tendons can completely eliminate resistive forces, increase volumetric energy density, and increase system efficiency for certain loading cases. Thus, there is a compelling case to be made for the use of tendoned FAMs in variable recruitment bundles.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 174
Author(s):  
Prabowo Prabowo ◽  
Gusfan Halik ◽  
Entin Hidayah ◽  
Taqiudin Haq

Flood disasters frequently occurred in Jember Regency, East Java. It is usually caused by the overflow of the Tanggul River in the rainy season, especially in the downstream area. Flood control could be done by building dams, embankments, shortcuts, and other technical flood protections. Meanwhile, mitigation efforts such as developing thematic maps of flood inundation need to be done to minimize losses caused by the flood. This study aims to design a flood mitigation strategy technically. The flood control structure was proposed by designing a shortcut in Kali Tanggul. Its performance was analyzed to reduce flood inundation in the Tanggul watershed. The flood inundation modeling was carried out using spatial analysis using ArcGIS 10.1 and hydraulic analysis using HECRAS 5.0.3. Flood inundation results were compared with the Tanggul watershed flood map developed by UPT PUSDA Lumajang. Based on modeling results, flood control using shortcuts is considered an effective strategy for flood mitigation. It was indicated by the reduction of flood inundation distributions, flood inundation height, and flood-affected areas. The results show that the flood height decrease 0.47 up to 0.56 m


2021 ◽  
Author(s):  
Mark Grutters ◽  
Sameer Punnapala ◽  
Dalia Salem Abdallah ◽  
Zaharia Cristea ◽  
Hossam El Din Mohamed El Nagger ◽  
...  

Abstract Asphaltene deposition is a serious and re-occurring flow assurance problem in several of the ADNOC onshore oilfields. Fluids are intrinsically unstable with respect to asphaltene precipitation, and operating conditions are such that severe deposition occurs in the wellbore. Wells in ADNOC are generally not equipped with downhole chemical injection lines for continuous inhibition, and protection of the wells require frequent shut-in and intervention by wireline and coiled tubing to inspect and clean up. Since some of the mature fields are under EOR recovery strategies, like miscible hydrocarbon WAG and CO2 flood, which exacerbates the asphaltene precipitation and deposition problems, a more robust mitigation strategy is required. In this paper the results of two different mitigation strategies will be discussed; continuous injection of asphaltene inhibitor via a capillary line in the tubular and asphaltene inhibitor formation squeeze. Three asphaltene inhibitors from different suppliers were pre-qualified and selected for field trial. Each inhibitor was selected for a formation squeeze in both one horizontal and one vertical well, and one of the inhibitors was applied via thru-tubing capillary string. The field trials showed that continuous injection in remote wells with no real-time surveillance options (e.g. gauges, flow meters) is technically challenging. The continuous injection trial via the capillary string was stopped due to technical challenges. From the six formation squeezes four were confirmed to be effective. Three out of fours squeezes significantly extended the production cycle, from approximately 1.4 to 6 times the normal uninhibited flow period. The most successful squeezes were in the vertical wells. The results of the trial were used to model the economic benefit of formation squeeze, compared to a ‘do-nothing’ approach where the wells are subject to shut-in and cleanup once the production rates drop below a threshold value. The model clearly indicates that the squeezes applied in ADNOC Onshore are only cost-effective if it extends the normal flow period by approximately three times. However, a net gain can be achieved already if the formation squeeze extends the flow cycle by 15 to 20%, due to reduction of shut-in days required for intervention. Therefore, the results in this paper illustrate that an asphaltene inhibitor formation squeeze can be an attractive mitigation strategy, both technically and economically.


2021 ◽  
pp. 004051752110460
Author(s):  
Charles Freeman ◽  
Reuben Burch ◽  
Catherine Black ◽  
Lesley Strawderman ◽  
Jaime Rickert ◽  
...  

Non-medical fabric masks, recommended by the Centers for Disease Control and Prevention and the World Health Organization, are available in various fabrics. There is limited research on the overall effectiveness of fabrics used to make masks. The purpose of this study was to assess fabrics commonly used in non-medical masks against their ability to mitigate the spread of COVID-19 based on the size and throughput of aerosols and particles (<1[Formula: see text]m). Seven different fabrics were evaluated on filtration efficiency (FE), differential pressure (dP), and filtration quality (Q factor). Results indicate <16% FE against particles the size of COVID-19, dP <0.51 in w.c., and Q factor <0.004 Pa−1. FE results are lower than previously reported research with dP and Q factors within international guidelines. Using non-medical fabric masks as the sole mitigation strategy is not effective. It is critical to combine non-medical fabric masks with physical distancing to slow the spread of COVID-19 further.


2021 ◽  
Author(s):  
Elie Fereche Itoba-Tombo ◽  
Seteno Karabo Obed Ntwampe ◽  
John Baptist Nzukizi Mudumbi ◽  
Lukhanyo Mekuto ◽  
Enoch Akinbiyi Akinpelu ◽  
...  

A fermentation technique was utilised to assess a fungus, i.e. Cunninghamella bertholletiae/polymorpha, isolated from rotting cassava, ability to produce mycotoxins and resultant oxidation by-products of the mycotoxins using liquid chromatography–mass spectrometry (LC/MS). Thus, the mycotoxins/secondary metabolites, fumonisin B1 (FB1) and deoxynivalenol (DON) were produced while, heptadecanone, octadecanamide, octadecenal and 3-keto-deoxynivalenol (DON) were successfully identified as biodegradation by-products in the fermentation broth treated with hydrolysing ‘monkey cup’ juice from Nepenthes mirabilis. Exposure to the mycotoxins and the biodegradation by-products through consumption of contaminated produce including contact due to the cumulative presence in arable agricultural soil can be harmful to humans and animals. Therefore, this work reports on a strategy for the mitigation and reduction of mycotoxins in agricultural soil using natural plant pitcher juices from N. mirabilis’ ‘monkey cup’.


2021 ◽  
Vol 164 ◽  
pp. 108615
Author(s):  
Jamila Khamis Alsuwaidi ◽  
Hyun Gook Kang ◽  
Ho Joon Yoon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document