Purinergic signaling between neurons and satellite glial cells of mouse dorsal root ganglia modulates neuronal excitability in vivo

Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Zhiyong Chen ◽  
Qian Huang ◽  
Xiaodan Song ◽  
Neil C. Ford ◽  
Chi Zhang ◽  
...  
2005 ◽  
Vol 289 (4) ◽  
pp. G670-G678 ◽  
Author(s):  
Tian-Ying Huang ◽  
Menachem Hanani

There is evidence that sensitization of neurons in dorsal root ganglia (DRG) may contribute to pain induced by intestinal injury. We hypothesized that obstruction-induced pain is related to changes in DRG neurons and satellite glial cells (SGCs). In this study, partial colonic obstruction was induced by ligation. The neurons projecting to the colon were traced by an injection of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate into the colon wall. The electrophysiological properties of DRG neurons were determined using intracellular electrodes. Dye coupling was examined with an intracellular injection of Lucifer yellow (LY). Morphological changes in the colon and DRG were examined. Pain was assessed with von Frey hairs. Partial colonic obstruction caused the following changes. First, coupling between SGCs enveloping different neurons increased 18-fold when LY was injected into SGCs near neurons projecting to the colon. Second, neurons were not coupled to other neurons or SGCs. Third, the firing threshold of neurons projecting to the colon decreased by more than 40% ( P < 0.01), and the resting potential was more positive by 4–6 mV ( P < 0.05). Finally, the number of neurons displaying spontaneous spikes increased eightfold, and the number of neurons with subthreshold voltage oscillations increased over threefold. These changes are consistent with augmented neuronal excitability. The pain threshold to abdominal stimulation decreased by 70.2%. Inflammatory responses were found in the colon wall. We conclude that obstruction increased neuronal excitability, which is likely to be a major factor in the pain behavior observed. The augmented dye coupling between glial cells may contribute to the neuronal hyperexcitability.


2014 ◽  
Vol 18 (12) ◽  
pp. 2367-2371 ◽  
Author(s):  
Menachem Hanani ◽  
Erez Blum ◽  
Shuangmei Liu ◽  
Lichao Peng ◽  
Shangdong Liang

2012 ◽  
Vol 8 ◽  
pp. 1744-8069-8-18 ◽  
Author(s):  
Temugin Berta ◽  
Tong Liu ◽  
Yen-Chin Liu ◽  
Zhen-Zhong Xu ◽  
Ru-Rong Ji

Sign in / Sign up

Export Citation Format

Share Document