dorsal root
Recently Published Documents


TOTAL DOCUMENTS

6986
(FIVE YEARS 966)

H-INDEX

151
(FIVE YEARS 13)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 183
Author(s):  
Cristina Fraquelli ◽  
Jasmine Hauzinger ◽  
Christian Humpel ◽  
Maria Nolano ◽  
Vincenzo Provitera ◽  
...  

The serpinins are relatively novel peptides generated by proteolytic processing of chromogranin A and they are comprised of free serpinin, serpinin-RRG and pGlu-serpinin. In this study, the presence and source of these peptides were studied in the skin. By Western blot analysis, a 40 kDa and a 50 kDa protein containing the sequence of serpinin were detected in the trigeminal ganglion and dorsal root ganglia in rats but none in the skin. RP-HPLC followed by EIA revealed that the three serpinins are present in similar, moderate amounts in rat dorsal root ganglia, whereas in the rat skin, free serpinin represents the predominant molecular form. There were abundant serpinin-positive cells in rat dorsal root ganglia and colocalization with substance P was evident. However, much more widespread distribution of the serpinins was found in dorsal root ganglia when compared with substance P. In the skin, serpinin immunoreactivity was found in sensory nerves and showed colocalization with substance P; as well, some was present in autonomic nerves. Thus, although not exclusively, there is evidence that serpinin is a constituent of the sensory innervation of the skin. The serpinins are biologically highly active and might therefore be of functional significance in the skin.


2022 ◽  
Author(s):  
Diana J Goode ◽  
Neal E Mecum

Chemotherapy is often dose limiting due to the emergence of a debilitating neuropathy. IL-10 and IL-4 are protective against peripheral neuropathy, yet the cell source is unknown. Using flow cytometry, we found that naïve females had a greater frequency of anti-inflammatory CD4+ T cells in the dorsal root ganglion (DRG) than males. In response to paclitaxel, females had reduced hypersensitivity and a greater frequency of anti-inflammatory CD4+ T cells (FoxP3, IL-10, IL-4) in the DRG than ovariectomized and male mice. These findings support a model in which estrogen promotes anti- inflammatory CD4+ T cells in female DRG to suppress peripheral neuropathy.


Cureus ◽  
2022 ◽  
Author(s):  
Emmanuel Omosor ◽  
Taejun Lee ◽  
Namath Hussain

2022 ◽  
Author(s):  
Carrie J Finno ◽  
Yingying Chen ◽  
Seojin Park ◽  
Jeong Han Lee ◽  
Cristina Maria Perez-Flores ◽  
...  

Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) within the primary afferent dorsal root ganglia in mice, determined using single-cell transcriptome and electrophysiological analyses. TH+ DRGNs regulate innocuous mechanical sensation through C-low threshold mechanoreceptors. A differential assessment of wild-type and vitamin E deficient TH+ DRGNs revealed heterogeneity and specific functional phenotypes. The TH+ DRGNs comprise; fast-adapting eliciting one action potential (AP; 1-AP), moderately-adapting (>=2-APs), in responses to square-pulse current injection, and spontaneously firing (SF). Cisplatin increased the input resistance and AP frequency but reduced the temporal coding feature of 1-AP and >= 2-APs neurons. By contrast, cisplatin has no measurable effect on the SF neurons. Vitamin E reduced the cisplatin-mediated increased excitability, but did not improve the TH+ neuron temporal coding properties. Cisplatin mediates its effect by targeting outward K+ current, likely carried by through K2P18.1 (Kcnk18), discovered through the differential transcriptome studies and heterologous expression. Studies show a potential new cellular target for chemotherapy-induced peripheral neuropathy and implicate the possible neuroprotective effects of vitamin E in cisplatin chemotherapy.


2022 ◽  
Author(s):  
Mona Dastgheib ◽  
Seyed Vahid Shetab-Boushehri ◽  
Maryam Baeeri ◽  
Mahdi Gholami ◽  
Mohammad Yahya Karimi ◽  
...  

Abstract Diabetic neuropathy (DN) is the most challenging microvascular complication of diabetes and there is no suitable treatment for it, so the development of new agents to relieve DN is urgently needed. Since oxidative stress and inflammation play an essential role in the development of DN, clearance of these factors are good strategies for the treatment of this disease. According to key role of cyclic adenosine monophosphate (cAMP) in the regulation of oxidative stress and inflammatory pathways, it seems that phosphodiesterase inhibitors (PDEIs) can be as novel drug targets for improving DN through enhancement of cAMP level. The aim of this study was to evaluate the effects of rolipram, a selective PDE4 inhibitor, and pentoxifylline, a general PDE inhibitor on experimental model of DN and also to determine the possible mechanisms involved in the effectiveness of these agents. We investigated the effects of rolipram (1mg/kg) and pentoxifylline (100 mg/kg) and also combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for five weeks in rats that became diabetic by STZ (55 mg/kg, i.p.). After treatments, motor function was evaluated by open-field test, then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Next, oxidative stress biomarkers and inflammatory factors were assessed by biochemical and ELISA methods, and RT-PCR analysis in DRG neurons. Rolipram and/or pentoxifylline treatment significantly attenuated DN – induced motor function deficiency by modulating distance moved and velocity. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, as well as suppressed DN – induced oxidative stress which was associated with decrease in LPO and ROS and increase in TAC, total thiol, CAT and SOD in DRG neurons. On the other hand, the level of inflammatory factors (TNF-α, NF-kB and COX2) significantly decreased following rolipram and/or pentoxifylline administration.The maximum effectiveness was with rolipram and/or pentoxifylline combination on mentioned factors.These findings provide novel experimental evidence for further clinical investigations on rolipram and pentoxifylline combination for the treatment of DN.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Reham Alfaraj ◽  
Zainab Alabdulsalam ◽  
Zahrah Alfaraj ◽  
Hawraa Alsunni ◽  
Hussain Alhawaj ◽  
...  

Several factors might influence the duration and efficiency of local anesthesia. This study investigates the effect of habitual caffeine intake on lidocaine action and explores the potential involvement of voltage-gated sodium channels in the interaction effect. Wistar rats were divided into four groups: (i) control (Ctrl), (ii) lidocaine intraplantar injection (LIDO), (iii) habitual caffeine intake (CAF), and (iv) lidocaine intraplantar injection and habitual caffeine intake (LIDO + CAF). Behavioral assessments, consisting of a paw pressure test for mechanical pressure sensation and a paw withdrawal latency test for thermal pain sensation, were performed at 0, 30, 60, and 90 minutes following lidocaine injection and after 10, 11, and 12 weeks of CAF intake. Pressure sensation was significantly reduced in the LIDO + CAF group compared with the control group. Moreover, the LIDO + CAF group exhibited reduced sensation compared to LIDO alone group. The LIDO + CAF combination exerted a synergistic effect at 30 and 60 minutes compared with the control. This synergistic effect was noted at 60 minutes (11 weeks of CAF intake) and at 30 minutes (12 weeks of CAF intake) compared with LIDO alone. Augmented thermal pain-relieving effects were observed in the LIDO + CAF group at all weeks compared to the control group and at 10 weeks compared to LIDO alone group. The molecular analysis of dorsal root ganglia suggested that CAF upregulated the mRNA expression of the Nav1.3, Nav1.7, and Nav1.8 sodium channel subtypes. Chronic caffeine consumption potentiates the local anesthetic action of lidocaine in an experimental animal model through mechanisms that involve the upregulation of voltage-gated sodium channels in the dorsal root ganglia.


Author(s):  
Irene Riquelme ◽  
Miguel Angel Reina ◽  
André P. Boezaart ◽  
Francisco Reina ◽  
Virginia García-García ◽  
...  

Author(s):  
Xiao-fen He ◽  
Yu-rong Kang ◽  
Xue-yu Fei ◽  
Lu-hang Chen ◽  
Xiang Li ◽  
...  

Abstract  Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.


Sign in / Sign up

Export Citation Format

Share Document