scholarly journals Salinimicrobium nanhaiense sp. nov. and Salinimicrobium oceani sp. nov., two novel species of the family Flavobacteriaceae isolated from the South China Sea

2020 ◽  
Vol 70 (10) ◽  
pp. 5263-5270 ◽  
Author(s):  
Wen-Rui Cao ◽  
Lan-Zeng Zhang ◽  
Yi-Hao Hu ◽  
Ming-Yu Jiang ◽  
Ying-Jie Li

Strains J15B81-2T and J15B91T were isolated from a sediment sample collected from the South China Sea. Cells of both strains were observed to be rod-shaped, non-gliding, Gram-stain-negative, yellow-pigmented, facultatively anaerobic, catalase-positive, oxidase-negative and showing optimum growth at 30 °C. Strains J15B81-2T and J15B91T could tolerate up to 9 and 10  % (w/v) NaCl concentration and grow at pH 6.5–9.5 and 6.0–9.0, respectively. The strains shared 97.4 % 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 81.1–85.8 % ANIb and 31.5 % dDDH values calculated using whole genome sequences. Strains J15B81-2T and J15B91T shared highest 16S rRNA gene sequence similarity to Salinimicrobium xinjiangense CGMCC 1.12522T (98.4 %) and Salinimicrobium sediminis CGMCC 1.12641T (98.0 %), respectively. Among species with validly published names, S. sediminis CGMCC 1.12641T shared close genetic relatedness with strains J15B81-2T [85.1–85.3% average nucleotide identity based on blastBlast+ (ANIb) and 30.6 % digital DNA–DNA hybridization (dDDH)] and J15B91T (76.6–79.1 % ANIb and 21.5 % dDDH). The major fatty acid of strains J15B81-2T and J15B91T were identified as iso-C15 : 0 and iso-C16 : 0, respectively, and the major polar lipids of the two strains consisted of phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid and one unidentified lipid. The strains contained MK-6 as their predominant menaquinone. The genomic G+C contents of strains J15B81-2T and J15B91T were determined to be 41.7 and 41.8 mol %, respectively. Both strains are considered to represent two novel species of the genus Salinimicrobium and the names Salinimicrobium nanhaiense sp. nov. and Salinimicrobium oceani sp. nov. are proposed for strains J15B81-2T (=KCTC 72867T=MCCC 1H00410T) and J15B91T (=KCTC 72869T=MCCC 1H00411T), respectively.

2020 ◽  
Vol 70 (12) ◽  
pp. 6381-6389 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Li-Chu Chen ◽  
Che-Chia Yang ◽  
Aurelien Carlier ◽  
Wen-Ming Chen

A novel Gram-negative, aerobic, non-motile, ovoid to rod-shaped bacterium, designated NBD-18T, was isolated from a freshwater river in Taiwan. Optimal growth occurred at 30 °C, at pH 6 and in the absence of NaCl. The predominant fatty acids of strain NBD-18T were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 0 cyclo and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidyldimethylethanolamine. The major polyamine was putrescine. The major isoprenoid quinone was Q-8. The genomic DNA G+C content of strain NBD-18T was 50.9 %. Strain NBD-18T was most closely related to Orrella dioscoreae LMG 29303T and Algicoccus marinus HZ20T at a 16S rRNA gene sequence similarity of 97.7 %. 16S rRNA gene sequence similarity between O. dioscoreae LMG 29303T and A. marinus HZ20T was 97.7 %. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set indicated that strain NBD-18T, O. dioscoreae LMG 29303T and A. marinus HZ20T are affiliated with the same genus. Digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values among these three strains supported that they belong to the same genus and that strain NBD-18T represents a novel species. Thus, A. marinus HZ20T should be reclassified as Orrella marina comb. nov. based on the rules for priority of publication and validation. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain NBD-18T represents a novel species in the genus Orrella , for which the name Orrella amnicola sp. nov. is proposed. The type strain is NBD-18T (=BCRC 81197T=LMG 31338T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1024-1029 ◽  
Author(s):  
P. Kämpfer ◽  
S. Wellner ◽  
K. Lohse ◽  
N. Lodders ◽  
K. Martin

Two Gram-positive, non-endospore-forming rods, strains C5T and T8T , were isolated from the phyllospheres of Cerastium holosteoides and Trifolium repens, respectively, and were studied in detail for their taxonomic position. 16S rRNA gene sequence analysis allocated both isolates clearly to the genus Rhodococcus . Isolate C5T was most closely related to Rhodococcus fascians and Rhodococcus yunnanensis , showing 99.2 % gene sequence similarity to both species. Strain T8T revealed the highest 16S rRNA gene sequence similarity to Rhodococcus corynebacterioides (98.8 %) and Rhodococcus kroppenstedtii (98.6 %). The quinone system of both strains was composed of dihydrogenated menaquinones with eight (major amount) as well as nine, seven and six isoprenoid units (MK-8H2, MK-9H2 MK-7H2 MK-6H2).The polar lipid profiles of strains C5T and T8T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unknown phospholipid. Additionally, strain C5T contained one unknown glycolipid, and strain T8T three unknown aminolipids. The fatty acid profiles contained major amounts of C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0, which supported the grouping of the two isolates in the genus Rhodococcus . Physiological/biochemical characterization and DNA–DNA hybridizations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of both strains. For this reason, we propose strain C5T ( = LMG 26203T  = CCM 7906T) as the type strain of a novel species with the name Rhodococcus cerastii sp. nov., and strain T8T ( = LMG 26204T  = CCM 7905T) as the type strain of a second novel species with the name Rhodococcus trifolii sp. nov.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2019 ◽  
Vol 69 (4) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yuanyuan Tian ◽  
Chuanyu Han ◽  
Jiangmeihui Hu ◽  
Junwei Zhao ◽  
Chen Zhang ◽  
...  

A novel actinomycete, designated strain NEAU-TCZ24T, was isolated from soil and characterized using a polyphasic approach. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus Cellulomonas and formed a stable clade with its closest relatives Cellulomonas terrae JCM 14899T (98.4 % 16S rRNA gene sequence similarity), Cellulomonas xylanilytica JCM 14281T (97.9 %) and Cellulomonas humilata JCM 11945T (97.7 %). The major menaquinones were identified as MK-9(H4) and MK-8(H4). The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositolmannoside, a ninhydrin-positiveglycolipid, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified lipid. The major fatty acids were identified as anteiso-C15 : 0, C18 : 1ω9c, C16 : 0 and anteiso-C17 : 0. Moreover, morphological and chemotaxonomic properties of NEAU-TCZ24T also confirmed the affiliation of the isolate to the genus Cellulomonas . However, multilocus sequence analysis based on five other house-keeping genes (gyrB, rpoB, recA, relA and atpD), DNA–DNA relatedness, physiological and biochemical data indicated that NEAU-TCZ24T could be distinguished from its closest relatives. Therefore, it is proposed that NEAU-TCZ24T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas rhizosphaerae sp. nov. is proposed. The type strain is NEAU-TCZ24T (=CCTCC AA 2018042T=JCM 32383T).


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


Author(s):  
Ji Young Choi ◽  
Seung-Hyeon Choi ◽  
Jam-Eon Park ◽  
Ji-Sun Kim ◽  
Jiyoung Lee ◽  
...  

An obligately anaerobic, non-motile, Gram-negative and rod-shaped strain (AGMB03916T) was isolated from faeces of a 2-week-old piglet raised at the National Institute of Animal Science in Wanju, Republic of Korea. Growth of strain AGMB03916T occurred at 30–45 °C (optimum, 37 °C), at pH 6–9 (optimum, pH 8) and in the presence of 0.5–1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence analyses, strain AGMB03916T was closely related to two validly published species of the genus Phocaeicola , Phocaeicola plebeius and Phocaeicola coprocola . The 16S rRNA gene sequence similarity of strain AGMB03916T compared to P. plebeius M12T (=KCTC 5793T) and P. coprocola M16T (=KCTC 5443T) were 96.3 and 95.0 %, respectively. The genomic DNA G+C content of strain AGMB03916T was 46.4 mol%. The average nucleotide identity values between strain AGMB03916T and the reference strains were 74.9–78.5 %. Cells were able to utilize d-glucose, lactose, sucrose, maltose, salicin, aesculin hydrolysis, cellobiose and raffinose. The major end product of metabolism was acetate. The major cellular fatty acids (>10 %) of the isolate were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, C16 : 0 3-OH and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA). On the basis of the genotypic, biochemical, chemotaxonomic, phenotypic and phylogenetic data, strain AGMB03916T represents a novel species of the genus Phocaeicola , for which the name Phocaeicola faecicola sp. nov. is proposed. The type strain is AGMB03916T (=KCTC 25014T=GDMCC 1.2574T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4006-4011 ◽  
Author(s):  
Yirang Cho ◽  
Hyunwoo Chung ◽  
Gwang Il Jang ◽  
Dong Han Choi ◽  
Jae Hoon Noh ◽  
...  

A Gram-staining-negative, non-motile, spore-forming, rod-shaped, marine bacterial strain, CL-KR2T, was isolated from tropical seawater near Kosrae, an island in the Federated States of Micronesia. Analysis of the 16S rRNA gene sequence of strain CL-KR2T revealed a clear affiliation with the genus Gracilimonas . Based on phylogenetic analysis, strain CL-KR2T showed the closest phylogenetic relationship to Gracilimonas tropica CL-CB462T, with 16S rRNA gene sequence similarity of 96.6 %. DNA–DNA relatedness between strain CL-KR2T and G. tropica CL-CB462T was 6.7 % (reciprocal 9.5 %). Strain CL-KR2T grew in the presence of 1–20 % sea salts and the optimal salt concentration was 3.5–5 %. The temperature and pH optima for growth were 35 °C and pH 7.5. The major cellular fatty acids (≥10.0 %) of strain CL-KR2T were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 1ω9c and the only isoprenoid quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, two unidentified glycolipids and two unidentified lipids. The genomic DNA G+C content of strain CL-KR2T was 43.2 mol%. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain CL-KR2T could be distinguished from the only member of the genus Gracilimonas with a validly published name. Thus, strain CL-KR2T should be assigned to a novel species in the genus Gracilimonas , for which the name Gracilimonas rosea sp. nov. is proposed. The type strain is CL-KR2T ( = KCCM 90206T = JCM 18898T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 212-218 ◽  
Author(s):  
Mustafa Camas ◽  
Anil Sazak ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Demet Cetin ◽  
...  

A novel actinomycete, strain A4036T, was isolated from a soil sample collected from the Jabi district in Abuja, Nigeria. The taxonomic position of strain A4036T was established using a combination of genotypic and phenotypic analyses. The organism formed extensively branched substrate and aerial hyphae that generated spiral chains of spores with warty surfaces. The cell wall contained meso-diaminopimelic acid and the cell-wall sugars were glucose, madurose, mannose and ribose. The predominant menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylinositol mannoside, hydroxy-phosphatidylethanolamine, hydroxy-phosphatidylmethylethanolamine, two unidentified phospholipids and four unknown glucosamine-containing phospholipids. The major cellular fatty acids were iso-C16 : 0 2-OH, iso-C16 : 0 and 10-methyl C17 : 0. On the basis of 16S rRNA gene sequence similarity studies, strain A4036T grouped in the genus Nonomuraea , being most closely related to Nonomuraea angiospora IFO 13155T (99.05 %), Nonomuraea candida HMC10T (98.78 %), Nonomuraea kuesteri GW 14-1925T (98.49 %), Nonomuraea endophytica YIM 65601T (98.42 %), Nonomuraea maheshkhaliensis 16-5-14T (98.40 %), Nonomuraea turkmeniaca DSM 43926T (98.38 %), Nonomuraea helvata IFO 14681T (98.29 %), Nonomuraea rubra DSM 43768T (98.10 %) and Nonomuraea salmonea DSM 43678T (98.06 %). Levels of 16S rRNA gene sequence similarity to the type strains of other species of the genus Nonomuraea were <98 %. Despite the high 16S rRNA gene sequence similarities, DNA–DNA relatedness values and phenotypic data demonstrated that strain A4036T was clearly distinguished from all closely related species of the genus Nonomuraea . Thus, this isolate is considered to represent a novel species of the genus Nonomuraea , for which the name Nonomuraea jabiensis sp. nov. is proposed. The type strain is A4036T ( = DSM 45507T = KCTC 19870T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1724-1728 ◽  
Author(s):  
Peter Kämpfer ◽  
Marie T. Poppel ◽  
Gottfried Wilharm ◽  
Stefanie P. Glaeser ◽  
Hans-Jürgen Busse

A Gram-stain-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile bacterium (strain 280T) isolated from a chicken was studied for its taxonomic allocation. 16S rRNA gene sequence analyses clearly allocated the isolate in the genus Paenochrobactrum group with a 16S rRNA gene sequence similarity of 98.8 % to the currently recognized species, Paenochrobactrum gallinarii and Paenochrobactrum glaciei . This allocation was confirmed by the fatty acid data (major fatty acids: C18 : 1ω7c and C19 : 0 cyclo ω8c) and a polyamine pattern with the major compound putrescine and relatively high amounts of spermidine. Also, the polar lipid profile with phosphatidylethanolamine, phosphatiylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine and the genus-specific ‘stretched aminolipid’ was well in line with the description of the genus Paenochrobactrum . The quinone system consisted predominantly of ubiquinone Q-10 with traces of Q-9 and Q-11. DNA–DNA hybridization of strain 280T with Paenochrobactrum gallinarii Sa25T and Paenochrobactrum glaciei KMM 3858T showed relatedness values of 38.8 % (reciprocal 20.2 %) and 30.2 % (reciprocal 29.8 %), respectively. These results in combination with differentiating physiological and biochemical data clearly showed that strain 280T merits species status. We propose the name Paenochrobactrum pullorum sp. nov. to accommodate this strain with the type strain 280T ( = LMG 28095T = CIP 110700T).


Sign in / Sign up

Export Citation Format

Share Document