scholarly journals Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes

2013 ◽  
Vol 94 (3) ◽  
pp. 559-569 ◽  
Author(s):  
Santina Grazioli ◽  
Francesca Fallacara ◽  
Emiliana Brocchi

Knowledge of the antigenic structure of foot-and-mouth disease virus (FMDV) has relevance in the development of diagnostic assays, in the evaluation of the antigenic variability and in the selection of appropriate vaccine strains. Antigenic sites have been investigated only in FMDVs of serotypes O, A and C, while it would be valuable to extend studies also to other serotypes. This paper reports the identification of antigenic sites involved in virus neutralization in the FMDV serotype Asia 1 by using a new panel of mAbs and their relation with sites described in other serotypes is discussed. Out of 24 mAbs raised against the FMDV serotype Asia 1, 10 neutralize viral infectivity and were used to select FMDV mutants resistant to neutralization. On the basis of their reactivity profile with virus mutants, the 10 neutralizing mAbs were clustered in four groups corresponding to four independent antigenic sites. By comparing the amino acid sequence of the parental virus and of virus mutants, the amino acids crucial for the four sites were mapped at the following positions: VP1 140–142, VP2 67–79, VP3 58/59 and VP3 218. Three of the four neutralizing sites identified and mapped on FMDV serotype Asia 1 correspond structurally and functionally to analogous sites described in FMDV serotypes O, A and C, enforcing the evidence that these are dominant antigenic sites in the FMDV structure. The fourth site, located at the C terminus of VP3, is a new independent site, described for the first time in FMDV.

2009 ◽  
Vol 159 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Young-Joon Ko ◽  
Hye-Young Jeoung ◽  
Hyang-Sim Lee ◽  
Byung-Sik Chang ◽  
Seung-Min Hong ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
pp. 23-26
Author(s):  
Mohammad Showkat Mahmud ◽  
Eusha Islam ◽  
Md. Giasuddin ◽  
Mohammed Abdus Samad ◽  
Md. Rezaul Karim ◽  
...  

2009 ◽  
Vol 139 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Kwang-Nyeong Lee ◽  
Jae-Ku Oem ◽  
Jong-Hyeon Park ◽  
Su-Mi Kim ◽  
Seo-Yong Lee ◽  
...  

Vaccine ◽  
2018 ◽  
Vol 36 (41) ◽  
pp. 6095-6102 ◽  
Author(s):  
Jacquelyn Horsington ◽  
Charles Nfon ◽  
Jose L. Gonzales ◽  
Nagendrakumar Singanallur ◽  
Hilary Bittner ◽  
...  

2011 ◽  
Vol 92 (10) ◽  
pp. 2297-2309 ◽  
Author(s):  
F. F. Maree ◽  
B. Blignaut ◽  
J. J. Esterhuysen ◽  
T. A. P. de Beer ◽  
J. Theron ◽  
...  

Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents phylogenetic, genetic and antigenic analyses of South African Territories (SAT) serotypes prevalent in sub-Saharan Africa. Here, we show that the high levels of genetic diversity in the P1-coding region within the SAT serotypes are reflected in the antigenic properties of these viruses and therefore have implications for the selection of vaccine strains that would provide the best vaccine match against emerging viruses. Interestingly, although SAT1 and SAT2 viruses displayed similar genetic variation within each serotype (32 % variable amino acids), antigenic disparity, as measured by r1-values, was less pronounced for SAT1 viruses compared with SAT2 viruses within our dataset, emphasizing the high antigenic variation within the SAT2 serotype. Furthermore, we combined amino acid variation and the r1-values with crystallographic structural data and were able to predict areas on the surface of the FMD virion as antigenically relevant. These sites were mostly consistent with antigenic sites previously determined for types A, O and C using mAbs and escape mutant studies. Our methodology offers a quick alternative to determine antigenic relevant sites for FMDV field strains.


2018 ◽  
Vol 30 (5) ◽  
pp. 699-707 ◽  
Author(s):  
Chungwon J. Chung ◽  
Alfonso Clavijo ◽  
Mangkey A. Bounpheng ◽  
Sabena Uddowla ◽  
Abu Sayed ◽  
...  

The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20–25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent–free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.


2012 ◽  
Vol 93 (7) ◽  
pp. 1442-1448 ◽  
Author(s):  
Haiwei Wang ◽  
Mei Xue ◽  
Decheng Yang ◽  
Guohui Zhou ◽  
Donglai Wu ◽  
...  

Previously, we finely mapped the neutralizing epitopes recognized by foot-and-mouth disease virus (FMDV) type Asia1-specific mAb 3E11 and FMDV type O-specific mAb 8E8. In this study, we engineered recombinant FMDVs of the serotype Asia1 (rFMDVs) displaying the type O-neutralizing epitope recognized by the mAb 8E8. These epitope-inserted viruses were genetically stable and exhibited growth properties that were similar to those of their parental virus. Importantly, the recombinant virus rFMDV-C showed neutralization sensitivity to both FMDV type Asia1 and type O mAbs, as well as to polyclonal antibodies. These results indicated that this epitope-inserted virus has the potential to induce neutralizing antibodies against both FMDV type Asia1 and type O. Our results demonstrated that the G-H loop of FMDV type Asia1 effectively displays the protective neutralizing epitopes of other FMDV serotypes, making this an attractive approach for the design of novel FMDV vaccines.


2008 ◽  
Vol 82 (18) ◽  
pp. 9075-9085 ◽  
Author(s):  
Vivian O'Donnell ◽  
Michael LaRocco ◽  
Barry Baxt

ABSTRACT Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the αV subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O1Campos (O1C3056R) which can utilize both integrins and HS as receptors and a second variant (O1C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4°C, followed by a temperature shift to 37°C, type O1C3056R-KGE colocalized with caveolin-1, while O1C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O1C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O1C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.


Sign in / Sign up

Export Citation Format

Share Document