cell surface
Recently Published Documents





2022 ◽  
Vol 12 ◽  
John E. Greenlee ◽  
Noel G. Carlson ◽  
Justin R. Abbatemarco ◽  
Ida Herdlevær ◽  
Stacey L. Clardy ◽  

Autoimmune and paraneoplastic encephalitides represent an increasingly recognized cause of devastating human illness as well as an emerging area of neurological injury associated with immune checkpoint inhibitors. Two groups of antibodies have been detected in affected patients. Antibodies in the first group are directed against neuronal cell surface membrane proteins and are exemplified by antibodies directed against the N-methyl-D-aspartate receptor (anti-NMDAR), found in patients with autoimmune encephalitis, and antibodies directed against the leucine-rich glioma-inactivated 1 protein (anti-LGI1), associated with faciobrachial dystonic seizures and limbic encephalitis. Antibodies in this group produce non-lethal neuronal dysfunction, and their associated conditions often respond to treatment. Antibodies in the second group, as exemplified by anti-Yo antibody, found in patients with rapidly progressive cerebellar syndrome, and anti-Hu antibody, associated with encephalomyelitis, react with intracellular neuronal antigens. These antibodies are characteristically found in patients with underlying malignancy, and neurological impairment is the result of neuronal death. Within the last few years, major advances have been made in understanding the pathogenesis of neurological disorders associated with antibodies against neuronal cell surface antigens. In contrast, the events that lead to neuronal death in conditions associated with antibodies directed against intracellular antigens, such as anti-Yo and anti-Hu, remain poorly understood, and the respective roles of antibodies and T lymphocytes in causing neuronal injury have not been defined in an animal model. In this review, we discuss current knowledge of these two groups of antibodies in terms of their discovery, how they arise, the interaction of both types of antibodies with their molecular targets, and the attempts that have been made to reproduce human neuronal injury in tissue culture models and experimental animals. We then discuss the emerging area of autoimmune neuronal injury associated with immune checkpoint inhibitors and the implications of current research for the treatment of affected patients.

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Astrid Louise Bjørn Bennedsen ◽  
Luyi Cai ◽  
Rune Petring Hasselager ◽  
Aysun Avci Özcan ◽  
Khadra Bashir Mohamed ◽  

Abstract Background The immune system recognizes and destroys cancer cells. However, cancer cells develop mechanisms to avoid detection by expressing cell surface proteins. Specific tumour cell surface proteins (e.g. HLA-G, PD-L1, CDX2) either alone or in combination with the relative presence of immune cells (CD3 and CD8 positive T-cells) in the tumour tissue may describe the cancer cells’ ability to escape eradication by the immune system. The aim was to investigate the prognostic value of immunohistochemical markers in patients with colon cancer. Methods We conducted a retrospective study including patients diagnosed with pT3 and pT4 colon cancers. Immunohistochemical staining with HLA-G, PD-L1, CDX2, CD3, and CD8 was performed on tissue samples with representation of the invasive margin. PD-L1 expression in tumour cells and immune cells was reported conjointly. The expression of CD3 and CD8 was reported as a merged score based on the expression of both markers in the invasive margin and the tumour centre. Subsequently, a combined marker score was established based on all of the markers. Each marker added one point to the score when unfavourable immunohistochemical features was present, and the score was categorized as low, intermediate or high depending on the number of unfavourable stains. Hazard ratios for recurrence, disease-free survival and mortality were calculated. Results We included 188 patients undergoing colon cancer resections in 2011–2012. The median follow-up was 41.7 months, during which 41 (21.8%) patients had recurrence and 74 (39.4%) died. In multivariable regression analysis positive HLA-G expression (HR = 3.37, 95%CI [1.64–6.93]) was associated with higher recurrence rates, while a preserved CDX2 expression (HR = 0.23, 95%CI [0.06–0.85]) was associated with a lower risk of recurrence. An intermediate or high combined marker score was associated with increased recurrence rates (HR = 20.53, 95%CI [2.68–157.32] and HR = 7.56, 95%CI [1.06–54.16], respectively). Neither high expression of PD-L1 nor high CD3-CD8 score was significantly associated with recurrence rates. Patients with a high CD3-CD8 score had a significantly longer DFS and OS. Conclusions In tumour cells, expression of HLA-G and loss of CDX2 expression were associated with cancer recurrence. In addition, a combination of certain tumour tissue biomarkers was associated with colorectal cancer recurrence.

2022 ◽  
Vol 12 (1) ◽  
George M. Ongwae ◽  
Mahendra D. Chordia ◽  
Jennie L. Cawley ◽  
Brianna E. Dalesandro ◽  
Nathan J. Wittenberg ◽  

AbstractBacteriophages are highly abundant molecular machines that have evolved proteins to target the surface of host bacterial cells. Given the ubiquity of lipopolysaccharides (LPS) on the outer membrane of Gram-negative bacteria, we reasoned that targeting proteins from bacteriophages could be leveraged to target the surface of Gram-negative pathogens for biotechnological applications. To this end, a short tail fiber (GP12) from the T4 bacteriophage, which infects Escherichia coli (E. coli), was isolated and tested for the ability to adhere to whole bacterial cells. We found that, surprisingly, GP12 effectively bound the surface of Pseudomonas aeruginosa cells despite the established preferred host of T4 for E. coli. In efforts to elucidate why this binding pattern was observed, it was determined that the absence of the O-antigen region of LPS on E. coli improved cell surface tagging. This indicated that O-antigens play a significant role in controlling cell adhesion by T4. Probing GP12 and LPS interactions further using deletions of the enzymes involved in the biosynthetic pathway of LPS revealed the inner core oligosaccharide as a possible main target of GP12. Finally, we demonstrated the potential utility of GP12 for biomedical applications by showing that GP12-modified agarose beads resulted in the depletion of pathogenic bacteria from solution.

2022 ◽  
Vol 119 (4) ◽  
pp. e2117576119
Bo Yang ◽  
Yuanyuan Jia ◽  
Yumin Meng ◽  
Ying Xue ◽  
Kefang Liu ◽  

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27–retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.

2022 ◽  
Jasmine M Manouchehri ◽  
Jharna Datta ◽  
Natalie Willingham ◽  
Robert Wesolowski ◽  
Daniel A Stover ◽  

Introduction: Breast cancer affects two million women worldwide every year and is the most common cause of cancer-related death among women. The triple-negative breast cancer (TNBC) sub-type is associated with an especially poor prognosis because currently available therapies, fail to induce long-lasting responses. Therefore, there is an urgent need to develop novel therapies that result in durable responses. One universal characteristic of the tumor microenvironment is a markedly elevated concentration of extracellular adenosine triphosphate (eATP). Chemotherapy exposure results in further increases in eATP through its release into the extracellular space of cancer cells via P2RX channels. eATP levels are reduced by eATPases. Given that high concentrations of eATP are cytotoxic, we hypothesized that augmenting the release of eATP through P2RX channels and inhibiting extracellular ATPases would sensitize TNBC cells to chemotherapy. Methods: TNBC cell lines MDA-MB 231, Hs 578t and MDA-MB 468 and non-tumorigenic immortalized mammary epithelial MCF-10A cells were treated with increasing concentrations the chemotherapeutic agent paclitaxel in the presence of eATPase inhibitors, specific agonists or antagonists of P2RXs with cell viability and eATP content being measured. Additionally, the mRNA, protein and cell surface expressions of the purinergic receptors P2RX4 and P2RX7 were evaluated in all examined cell lines via qRT-PCR, western blot, and flow cytometry analyses, respectively. Results: In the present study, we observed dose-dependent declines in cell viability and increases in eATP in paclitaxel-treated TNBC cell lines in the presence of inhibitors of eATPases. These effects were reversed by specific antagonists of P2RXs. Similar results were observed with P2RX activators. All examined cell lines expressed both P2RX4 and P2RX7 at the mRNA, protein and cell surface levels. Conclusion: These results reveal that eATP modulates the chemotherapeutic response in TNBC cell lines which could be exploited to enhance the efficacy of chemotherapy regimens for TNBC.

Guopan Liu ◽  
Ming Ho Choi ◽  
Haiying Ma ◽  
Xuejiao Guo ◽  
Pui-Chi Lo ◽  

Dhana G. Gorasia ◽  
Ignacio Lunar Silva ◽  
Catherine A. Butler ◽  
Maïalène Chabalier ◽  
Thierry Doan ◽  

The T9SS is a newly identified protein secretion system of the Fibrobacteres - Chlorobi - Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex.

2022 ◽  
Javier Martínez Pacheco ◽  
Limei Song ◽  
Victoria Berdion Gabarain ◽  
Juan Manuel Peralta ◽  
Tomás Urzúa Lehuedé ◽  

Root hairs (RH) are excellent model systems for studying cell size regulation since they elongate several hundred-fold their original size. Their growth is determined both by intrinsic and environmental signals. Although nutrients availability in the soil are key factors for a sustained plant growth, the molecular mechanisms underlying their perception and downstream signaling pathways remains unclear. Here, we identified that a low temperature triggers a strong RH cell elongation response involving the cell surface receptor kinase FERONIA (FER) and nutrient sensor TORC1 pathway. We found that FER is required to perceive limited nutrients availability caused by low temperature, to interacts with and activate TORC1-downstream components to trigger RH growth. Nitrates perceived and transported by NRT1.1 were found to mimic this growth response at low temperature. Our findings reveal a new molecular mechanism by which a central hub composed by FER-TORC1 controls RH cell elongation under low temperature.

Sign in / Sign up

Export Citation Format

Share Document