mouth disease virus
Recently Published Documents


TOTAL DOCUMENTS

3219
(FIVE YEARS 473)

H-INDEX

97
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 264
Author(s):  
Jong-Won Kim ◽  
Kyoung-Woo Park ◽  
Myeongkun Kim ◽  
Kyung Kwan Lee ◽  
Chang-Soo Lee

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of rapid results, isothermal reaction conditions, and high sensitivity. However, this diagnostic system often produces false positive results due to a high rate of non-specific reactions caused by formation of hairpin structures, self-dimers, and mismatched hybridization. The non-specific signals can be due to primers used in the methods because the utilization of multiple LAMP primers increases the possibility of self-annealing of primers or mismatches between primers and templates. In this study, we report a nanomaterial-assisted LAMP method that uses a graphene oxide–gold nanoparticles (AuNPs@GO) nanocomposite to enable the detection of foot-and-mouth disease virus (FMDV) with high sensitivity and specificity. Foot-and-mouth disease (FMD) is a highly contagious and deadly disease in cloven-hoofed animals; hence, a rapid, sensitive, and specific detection method is necessary. The proposed approach exhibited high sensitivity and successful reduction of non-specific signals compared to the traditionally established LAMP assays. Additionally, a mechanism study revealed that these results arose from the adsorption of single-stranded DNA on AuNPs@GO nanocomposite. Thus, AuNPs@GO nanocomposite is demonstrated to be a promising additive in the LAMP system to achieve highly sensitive and specific detection of diverse diseases, including FMD.


2022 ◽  
Author(s):  
Heng-Wei Lee ◽  
Yi-Fan Jiang ◽  
Hui-Wen Chang ◽  
Ivan-Chen Cheng

Abstract Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their replication. Enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors work on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites, rather than COPI factors, is required for foot-and-mouth disease virus (FMDV) replication. Therefore, we thought that deep understanding of FMDV 3A was the key to explaining the differences and to unlocking the secret of FMDV RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it would be located at the ER without vesicular modification. This change was revealed by mGFP and APEX2 fusion constructs observed by fluorescence microscopy and electron tomography, respectively. Referring to other 3A truncation, the minimal region for modification was aa 42–92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12. Both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1 as its C-terminus simultaneously interacted with Sec12, which possibly would enhance Sar1 activation. On the ER membrane, two active Sar1 were connected by 3A with regions of aa 42–59 and aa 76–92, causing curvature of the membrane. This mechanism is distinct from the traditional COPII pathway and should be crucial for FMDV RO formation.


2022 ◽  
Author(s):  
James Kelly ◽  
Jessica Swanson ◽  
Joseph Newman ◽  
Elisabetta Groppelli ◽  
Nicola Stonehouse ◽  
...  

Kobuviruses are an unusual and poorly characterised genus within the picornavirus family, and can cause gastrointestinal enteric disease in humans, livestock and pets. The human Kobuvirus, Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of five years, however this is a very rare occurrence. During the assembly of most picornaviruses (e.g. poliovirus, rhinovirus and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, Kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure and enhances permeabilisation of model membranes. Furthermore, using peptides we demonstrate that the N-terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. Importance: To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small non-enveloped RNA viruses includes significant human and animal pathogens and are also models to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses re-arrange their capsids and induce membrane permeability in the absence of VP4. Here we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 97
Author(s):  
Nagendrakumar Balasubramanian Singanallur ◽  
Phaedra Lydia Eblé ◽  
Anna Barbara Ludi ◽  
Bob Statham ◽  
Abdelghani Bin-Tarif ◽  
...  

The recent emergence and circulation of the A/ASIA/G-VII (A/G-VII) lineage of foot-and-mouth disease virus (FMDV) in the Middle East has resulted in the development of homologous vaccines to ensure susceptible animals are sufficiently protected against clinical disease. However, a second serotype A lineage called A/ASIA/Iran-05 (A/IRN/05) continues to circulate in the region and it is therefore imperative to ensure vaccine strains used will protect against both lineages. In addition, for FMDV vaccine banks that usually hold a limited number of strains, it is necessary to include strains with a broad antigenic coverage. To assess the cross protective ability of an A/G-VII emergency vaccine (formulated at 43 (95% CI 8–230) PD50/dose as determined during homologous challenge), we performed a heterologous potency test according to the European Pharmacopoeia design using a field isolate from the A/IRN/05 lineage as the challenge virus. The estimated heterologous potency in this study was 2.0 (95% CI 0.4–6.0) PD50/dose, which is below the minimum potency recommended by the World Organisation for Animal Health (OIE). Furthermore, the cross-reactive antibody titres against the heterologous challenge virus were poor (≤log10 0.9), even in those cattle that had received the full dose of vaccine. The geometric mean r1-value was 0.2 (95% CI 0.03–0.8), similar to the potency ratio of 0.04 (95% CI 0.004–0.3). Vaccination decreased viraemia and virus excretion compared to the unvaccinated controls. Our results indicate that this A/G-VII vaccine does not provide sufficient protection against viruses belonging to the A/IRN/05 lineage and therefore the A/G-VII vaccine strain cannot replace the A/IRN/05 vaccine strain but could be considered an additional strain for use in vaccines and antigen banks.


Virus Genes ◽  
2022 ◽  
Author(s):  
Jitendra K. Biswal ◽  
Biswa Ranjan Jena ◽  
Syed Zeeshan Ali ◽  
Rajeev Ranjan ◽  
Jajati K. Mohapatra ◽  
...  

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Ayah M. Hassan ◽  
Mostafa R. Zaher ◽  
Rabab T. Hassanien ◽  
Mervat I. Abd-El-Moniem ◽  
Ahmed R. Habashi ◽  
...  

Abstract Background Surveillance for circulating emerging diseases of economic importance has a major role in the rapid response to major pathogen outbreaks. Foot-and-mouth disease virus (FMDV) is one of the significant endemic viruses in Egypt. FMDV is periodically investigated for monitoring evolution and emergence of new variants. The genetic characterization of foot-and-mouth disease (FMD) virus serotype A responsible for recent outbreaks of FMD in Egypt was determined. Methods Samples were collected from different locations and virus isolation was performed using BHK-21 cells. Viral RNA was extracted and samples were screened for FMDV using real-time RT-PCR. DNA sequence analysis was performed and computational and bioinformatics analyses were used to determine the substitution rates and phylogenetic relationship. Results Sequence and phylogenetic analyses of full-length 1D region of FMDV samples collected from different governorates in 2020 showed close similarity to Egyptian FMDV strains from serotype A-African topotype-G-IV with genetic variation of 6.5%. Recently isolated FMDV strains showed high genetic variations from locally used vaccine strains in the major antigenic sites of VP1 region. Conclusions Although, efforts made by the veterinary authorities to implement an effective mass vaccination plan, the recently detected FMDV strains in this study could not be subtyped using the FMDV primers routinely used for molecular serotyping. These dissimilarities raise the alarm for reconsideration of the FMDV isolates used in vaccine manufacture. Clearly close monitoring of FMD in Egypt is urgently required to define the risks of future outbreaks and to ensure appropriate control measures against FMD major outbreaks.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Sk Mohiuddin Choudhury ◽  
Xusheng Ma ◽  
Yuanyuan Li ◽  
Xiaofeng Nian ◽  
Zhikuan Luo ◽  
...  

Foot-and-mouth disease virus (FMDV) infection causes inflammatory clinical symptoms, such as high fever and vesicular lesions, even death of animals. Interleukin-1β (IL-1β) is an inflammatory cytokine that plays an essential role in inflammatory responses against viral infection. The viruses have developed multiple strategies to induce the inflammatory responses, including regulation of IL-1β production. However, the molecular mechanism underlying the induction of IL-1β by FMDV remains not fully understood. Here, we found that FMDV robustly induced IL-1β production in macrophages and pigs. Infection of Casp-1 inhibitor-treated cells and NOD-, LRR- and pyrin domain-containing 3 (NLRP3)-knockdown cells indicated that NLRP3 is essential for FMDV-induced IL-1β secretion. More importantly, we found that FMDV Lpro associates with the NACHT and LRR domains of NLRP3 to promote NLRP3 inflammasome assembly and IL-1β secretion. Moreover, FMDV Lpro induces calcium influx and potassium efflux, which trigger NLRP3 activation. Our data revealed the mechanism underlying the activation of the NLRP3 inflammasome after FMDV Lpro expression, thus providing insights for the control of FMDV infection-induced inflammation.


Sign in / Sign up

Export Citation Format

Share Document