scholarly journals Stand-Alone Lateral Interbody Fusion for the Treatment of Low-Grade Degenerative Spondylolisthesis

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Luis Marchi ◽  
Nitamar Abdala ◽  
Leonardo Oliveira ◽  
Rodrigo Amaral ◽  
Etevaldo Coutinho ◽  
...  

The purpose of this paper was to investigate the stand-alone lateral interbody fusion as a minimally invasive option for the treatment of low-grade degenerative spondylolisthesis with a minimum 24-month followup. Prospective nonrandomized observational single-center study. 52 consecutive patients (67.6±10 y/o; 73.1% female;27.4±3.4 BMI) with single-level grade I/II single-level degenerative spondylolisthesis without significant spine instability were included. Fusion procedures were performed as retroperitoneal lateral transpsoas interbody fusions without screw supplementation. The procedures were performed in average 73.2 minutes and with less than 50cc blood loss. VAS and Oswestry scores showed lasting improvements in clinical outcomes (60% and 54.5% change, resp.). The vertebral slippage was reduced in 90.4% of cases from mean values of 15.1% preoperatively to 7.4% at 6-week followup (P<0.001) and was maintained through 24 months (7.1%,P<0.001). Segmental lordosis (P<0.001) and disc height (P<0.001) were improved in postop evaluations. Cage subsidence occurred in 9/52 cases (17%) and 7/52 cases (13%) spine levels needed revision surgery. At the 24-month evaluation, solid fusion was observed in 86.5% of the levels treated. The minimally invasive lateral approach has been shown to be a safe and reproducible technique to treat low-grade degenerative spondylolisthesis.

2014 ◽  
Vol 21 (6) ◽  
pp. 861-866 ◽  
Author(s):  
Michael Y. Wang ◽  
Ram Vasudevan ◽  
Stefan A. Mindea

Object Adjacent-segment degeneration and stenosis are common in patients who have undergone previous lumbar fusion. Treatment typically involves a revision posterior approach, which requires management of postoperative scar tissue and previously implanted instrumentation. A minimally invasive lateral approach allows the surgeon to potentially reduce the risk of these hazards. The technique relies on indirect decompression to treat central and foraminal stenosis and placement of a graft with a large surface area to promote robust fusion and stability in concert with the surrounding tensioned ligaments. The goal in this study was to determine if lateral interbody fusion without supplemental pedicle screws is effective in treating adjacent-segment disease. Methods For a 30-month study period at two institutions, the authors obtained all cases of lumbar fusion with new back and leg pain due to adjacent-segment stenosis and spondylosis failing conservative measures. All patients had undergone minimally invasive lateral interbody fusion from the side of greater leg pain without supplemental pedicle screw fixation. Patients were excluded from the study if they had undergone surgery for a nondegenerative etiology such as infection or trauma. They were also excluded if the intervention involved supplemental posterior instrumented fusion with transpedicular screws. Postoperative metrics included numeric pain scale (NPS) scores for leg and back pain. All patients underwent dynamic radiographs and CT scanning to assess stability and fusion after surgery. Results During the 30-month study period, 21 patients (43% female) were successfully treated using minimally invasive lateral interbody fusion without the need for subsequent posterior transpedicular fixation. The mean patient age was 61 years (range 37–87 years). Four patients had two adjacent levels fused, while the remainder had single-level surgery. All patients underwent surgery without conversion to a traditional open technique, and recombinant human bone morphogenetic protein–2 was used in the interbody space in all cases. The mean follow-up was 23.6 months. The mean operative time was 86 minutes, and the mean blood loss was 93 ml. There were no major intraoperative complications, but one patient underwent subsequent direct decompression in a delayed fashion. The leg pain NPS score improved from a mean of 6.3 to 1.9 (p < 0.01), and the back pain NPS score improved from a mean of 7.5 to 2.9 (p < 0.01). Intervertebral settling averaged 1.7 mm. All patients had bridging bone on CT scanning at the last follow-up, indicating solid bony fusion. Conclusions Adjacent-segment stenosis and spondylosis can be treated with a number of different operative techniques. Lateral interbody fusion provides an attractive alternative with reduced blood loss and complications, as there is no need to re-explore a previous laminectomy site. In this limited series a minimally invasive lateral approach provided high fusion rates when performed with osteobiological adjuvants.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Luis Marchi ◽  
Leonardo Oliveira ◽  
Rodrigo Amaral ◽  
Carlos Castro ◽  
Thiago Coutinho ◽  
...  

Low back pain is one of the most common ailments in the general population, which tends to increase in severity along with aging. While few patients have severe enough symptoms or underlying pathology to warrant surgical intervention, in those select cases treatment choices remain controversial and reimbursement is a substancial barrier to surgery. The object of this study was to examine outcomes of discogenic back pain without radiculopathy following minimally-invasive lateral interbody fusion. Twenty-two patients were treated at either one or two levels (28 total) between L2 and 5. Discectomy and interbody fusion were performed using a minimallyinvasive retroperitoneal lateral transpsoas approach. Clinical and radiographic parameters were analyzed at standard pre- and postoperative intervals up to 24 months. Mean surgical duration was 72.1 minutes. Three patients underwent supplemental percutaneous pedicle screw instrumentation. Four (14.3%) stand-alone levels experienced cage subsidence. Pain (VAS) and disability (ODI) improved markedly postoperatively and were maintained through 24 months. Segmental lordosis increased significantly and fusion was achieved in 93% of levels. In this series, isolated axial low back pain arising from degenerative disc disease was treated with minimally-invasive lateral interbody fusion in significant radiographic and clinical improvements, which were maintained through 24 months.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Won-Suh Choi ◽  
Jin-Sung Kim ◽  
Kyeong-Sik Ryu ◽  
Jung-Woo Hur ◽  
Ji-Hoon Seong

Background. Minimally invasive spinal transforaminal lumbar interbody fusion (MIS-TLIF) at L5-S1 is technically more demanding than it is at other levels because of the anatomical and biomechanical traits.Objective. To determine the clinical and radiological outcomes of MIS-TLIF for treatment of single-level spinal stenosis low-grade isthmic or degenerative spondylolisthesis at L5-S1.Methods. Radiological data and electronic medical records of patients who underwent MIS-TLIF between May 2012 and December 2014 were reviewed. Fusion rate, cage position, disc height (DH), disc angle (DA), disc slope angle, segmental lordotic angle (SLA), lumbar lordotic angle (LLA), and pelvic parameters were assessed. For functional assessment, the visual analogue scale (VAS), Oswestry disability index (ODI), and patient satisfaction rate (PSR) were utilized.Results. A total of 21 levels in 21 patients were studied. DH, DA, SLA, and LLA had increased from their preoperative measures at the final follow-up. Fusion rate was 86.7% (18/21) at 12 months’ follow-up. The most common cage position was anteromedial (15/21). The mean VAS scores for back and leg pain mean ODI scores improved significantly at the final follow-up. PSR was 88%. Cage subsidence was observed in 33.3% (7/21).Conclusions. The clinical and radiologic outcomes after MIS-TLIF at L5-S1 in patients with spinal stenosis or spondylolisthesis are generally favorable.


2021 ◽  
Vol 1 ◽  
pp. 100054
Author(s):  
Kaweekrai Anusart ◽  
Kittisak Songthong ◽  
Vit Kotheeranurak ◽  
Weerasak Singhatanadgige ◽  
Worawat Limthongkul

SAS Journal ◽  
2010 ◽  
Vol 4 (4) ◽  
pp. 115-121 ◽  
Author(s):  
Jonathan E. Webb ◽  
Gilad J. Regev ◽  
Steven R. Garfin ◽  
Choll W. Kim

Sign in / Sign up

Export Citation Format

Share Document