scholarly journals A general technique for the detection of switch-like bistability in chemical reaction networks governed by mass action kinetics with conservation laws

2020 ◽  
Author(s):  
Brandon C Reyes ◽  
Irene Otero-Muras ◽  
Vladislav A Petyuk

AbstractBackgroundTheoretical analysis of signaling pathways can provide a substantial amount of insight into their function. One particular area of research considers signaling pathways capable of assuming two or more stable states given the same amount of signaling ligand. This phenomenon of bistability can give rise to switch-like behavior, a mechanism that governs cellular decision making. Investigation of whether or not a signaling pathway can confer bistability and switch-like behavior, without knowledge of specific kinetic rate constant values, is a mathematically challenging problem. Recently a technique based on optimization has been introduced, which is capable of finding example parameter values that confer switch-like behavior for a given pathway. Although this approach has made it possible to analyze moderately sized pathways, it is limited to reaction networks that presume a uniterminal structure. It is this limited structure we address by developing a general technique that applies to any mass action reaction network with conservation laws.ResultsIn this paper we developed a generalized method for detecting switch-like bistable behavior in any mass action reaction network with conservation laws. The method involves 1) construction of a constrained optimization problem using the determinant of the Jacobian of the underlying rate equations, 2) minimization of the objective function to search for conditions resulting in a zero eigenvalue 3) computation of a confidence level that describes if the global minimum has been found and 4) evaluation of optimization values, using either numerical continuation or directly simulating the ODE system, to verify that a bistability region exists. The generalized method has been tested on three motifs known to be capable of bistability.ConclusionsWe have developed a variation of an optimization-based method for discovery of bistability, which is not limited to the structure of the chemical reaction network. Successful completion of the method provides an S-shaped bifurcation diagram, which indicates that the network acts as a bistable switch for the given optimization parameters.

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Brandon C Reyes ◽  
Irene Otero-Muras ◽  
Vladislav A Petyuk

Abstract Background Theoretical analysis of signaling pathways can provide a substantial amount of insight into their function. One particular area of research considers signaling pathways capable of assuming two or more stable states given the same amount of signaling ligand. This phenomenon of bistability can give rise to switch-like behavior, a mechanism that governs cellular decision making. Investigation of whether or not a signaling pathway can confer bistability and switch-like behavior, without knowledge of specific kinetic rate constant values, is a mathematically challenging problem. Recently a technique based on optimization has been introduced, which is capable of finding example parameter values that confer switch-like behavior for a given pathway. Although this approach has made it possible to analyze moderately sized pathways, it is limited to reaction networks that presume a uniterminal structure. It is this limited structure we address by developing a general technique that applies to any mass action reaction network with conservation laws. Results In this paper we developed a generalized method for detecting switch-like bistable behavior in any mass action reaction network with conservation laws. The method involves (1) construction of a constrained optimization problem using the determinant of the Jacobian of the underlying rate equations, (2) minimization of the objective function to search for conditions resulting in a zero eigenvalue, (3) computation of a confidence level that describes if the global minimum has been found and (4) evaluation of optimization values, using either numerical continuation or directly simulating the ODE system, to verify that a bistability region exists. The generalized method has been tested on three motifs known to be capable of bistability. Conclusions We have developed a variation of an optimization-based method for the discovery of bistability, which is not limited to uniterminal chemical reaction networks. Successful completion of the method provides an S-shaped bifurcation diagram, which indicates that the network acts as a bistable switch for the given optimization parameters.


BIOMATH ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 2110023
Author(s):  
Svetoslav Marinov Markov

In the present work we discuss the?usage of the framework of chemical reaction networks for the construction of dynamical models and their mathematical analysis. To this end, the process of construction of reaction-network-based models via mass action kinetics is introduced and illustrated on several familiar examples,?such as the exponential (radioactive) decay, the logistic and the Gompertz models. Our final goal is to modify the reaction network of the classic Gompertz model in a natural way using certain features of the exponential decay and the logistic models. The growth function of the obtained new Gompertz-type hybrid model possesses an additional degree of freedom (one more rate parameter) and is thus more flexible when applied to numerical simulation of measurement and experimental data sets. More specifically, the ordinate (height) of the inflection point of the new generalized Gompertz model can vary in the interval (0, 1/e], whereas the respective height of the classic Gompertz model is fixed at 1/e (assuming the height of the upper asymptote is one). It is shown that?the new model is a generalization of both the classic Gompertz model and the one-step exponential decay model.?Historically the Gompertz function has been first used for statistical/insurance purposes, much later this function has been applied to simulate biological growth data sets coming from various fields of science, the reaction network approach explains and unifies the two approaches.


2009 ◽  
Vol 15 (5) ◽  
pp. 578-597
Author(s):  
Marcello Farina ◽  
Sergio Bittanti

Sign in / Sign up

Export Citation Format

Share Document