scholarly journals Short-range asymptotic behavior of the wave functions of interacting spin-1/2 fermionic atoms with spin-orbit coupling: A model study

2013 ◽  
Vol 87 (3) ◽  
Author(s):  
Yuxiao Wu ◽  
Zhenhua Yu

Results of calculations of the spin-orbit coupling constant for 2 p , 3 p , 4 p , and 3 d shell ions and atoms are presented. The calculations are based on a theory developed in a previous paper. Excellent agreement of this theory with experiment is obtained for the 2 p and 3 d shell ions, while calculations using the familiar < ∂ V / r ∂ r > expression for the coupling constant lie 10 to 20 % too high. The exchange terms discussed in the earlier paper make a contribution to the coupling constant of the same sign and order of magnitude as the ordinary shielding terms. For the 3 p and 4 p shell atoms, the calculated coupling constants based on the exact theory and on the < ∂ V / r ∂ r > expression both tend to lie below the experimental values. An explanation for this disagreement is suggested, based on the noded nature of the outer-electron radial wave functions for these atoms. The importance of the residual-spin-other-orbit interaction is discussed, and it is shown that ignoring the form of this interaction may lead to a large variation in the coupling constant within a configuration.


2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document