scholarly journals Enhancement of spin-orbit coupling and magnetic scattering in hydrogenated graphene

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Shimin Cao ◽  
Chuanwu Cao ◽  
Shibing Tian ◽  
Jian-Hao Chen
Nanoscale ◽  
2021 ◽  
Author(s):  
Bibekananda Das ◽  
Prahallad Padhan

In Si–La0.7Sr0.3MnO3, the interfacial charge transfer driven strong localized antiferromagnetic and spin–orbit couplings favor positive magnetoresistance, which is suppressed by strong magnetic scattering induced by the top ZnO layer results in negative magnetoresistance.


2013 ◽  
Vol 110 (24) ◽  
Author(s):  
Martin Gmitra ◽  
Denis Kochan ◽  
Jaroslav Fabian

2013 ◽  
Vol 9 (5) ◽  
pp. 284-287 ◽  
Author(s):  
Jayakumar Balakrishnan ◽  
Gavin Kok Wai Koon ◽  
Manu Jaiswal ◽  
A. H. Castro Neto ◽  
Barbaros Özyilmaz

2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


2019 ◽  
Vol 31 (18) ◽  
pp. 185802 ◽  
Author(s):  
Sayantika Bhowal ◽  
Shreemoyee Ganguly ◽  
Indra Dasgupta

Sign in / Sign up

Export Citation Format

Share Document