charge transfer
Recently Published Documents


TOTAL DOCUMENTS

27611
(FIVE YEARS 6498)

H-INDEX

215
(FIVE YEARS 67)

2022 ◽  
Vol 13 ◽  
pp. 100116
Author(s):  
Rajesh Sahu ◽  
Tarun Patodia ◽  
Dinesh Yadav ◽  
S.K. Jain ◽  
Balram Tripathi

2022 ◽  
Vol 375 ◽  
pp. 115852
Author(s):  
Haisheng Yi ◽  
Yu Liu ◽  
Xia Lu
Keyword(s):  

2022 ◽  
Author(s):  
Sergey A. Shteingolts ◽  
Adam I. Stash ◽  
Vladimir G. Tsirelson ◽  
Robert R. Fayzullin

Intricate behavior of one-electron potentials from the Euler equation for electron density and corresponding gradient force fields in crystals was studied. Bosonic and fermionic quantum potentials were utilized in bonding analysis as descriptors of the localization of electrons and electron pairs. Channels of locally enhanced kinetic potential and the corresponding saddle Lagrange points were found between chemically bonded atoms linked by the bond paths. Superposition of electrostatic φ_es (r) and kinetic φ_k (r) potentials and electron density ρ(r) allowed partitioning any molecules and crystals into atomic ρ- and potential-based φ-basins; the φ_k-basins explicitly account for electron exchange effect, which is missed for φ_es-ones. Phenomena of interatomic charge transfer and related electron exchange were explained in terms of space gaps between ρ- and φ-zero-flux surfaces. The gap between φ_es- and ρ-basins represents the charge transfer, while the gap between φ_k- and ρ-basins is proposed to be a real-space manifestation of sharing the transferred electrons. The position of φ_k-boundary between φ_es- and ρ-ones within an electron occupier atom determines the extent of electron sharing. The stronger an H‧‧‧O hydrogen bond is, the deeper hydrogen atom’s φ_k-basin penetrates oxygen atom’s ρ-basin. For covalent bonds, a φ_k-boundary closely approaches a φ_es-one indicating almost complete sharing the transferred electrons, while for ionic bonds, the same region corresponds to electron pairing within the ρ-basin of an electron occupier atom.


2022 ◽  
Vol 12 (2) ◽  
pp. 885
Author(s):  
Ahmed Yahia Kallel ◽  
Viktor Petrychenko ◽  
Olfa Kanoun

Several studies show that impedance spectroscopy is a suitable method for online battery diagnosis and State-of-Health (SoH) estimation. However, the most common method is to model the acquired impedance spectrum with equivalent circuits and focus on the most sensitive parameters, namely the charge-transfer resistance. This paper introduces first a detailed model of a battery cell, which is then simplified and adapted to the observable spectrum behavior. Based on the physical meaning of the model parameters, we propose a novel approach for SoH assessment combining parameters of the impedance spectrum by building the ratio of the solid electrolyte interphase (SEI) resistance to the total resistance of SEI and the charge transfer. This ratio characterizes the charge-transfer efficiency at the electrodes’ surfaces and should decrease systematically with SoH. Four different cells of the same type were cycled 400 times for the method validation, and impedance spectroscopy was performed at every 50th cycle. The results show a systematic correlation between the proposed ratio and the number of cycles on individual cell parameters, which build the basis of a novel online method of SoH assessment.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Elena A. Chiticaru ◽  
Luisa Pilan ◽  
Mariana Ioniţă

In this paper, we propose an improved electrochemical platform based on graphene for the detection of DNA hybridization. Commercial screen-printed carbon electrodes (SPCEs) were used for this purpose due to their ease of functionalization and miniaturization opportunities. SPCEs were modified with reduced graphene oxide (RGO), offering a suitable surface for further functionalization. Therefore, aryl-carboxyl groups were integrated onto RGO-modified electrodes by electrochemical reduction of the corresponding diazonium salt to provide enough reaction sites for the covalent immobilization of amino-modified DNA probes. Our final goal was to determine the optimum conditions needed to fabricate a simple, label-free RGO-based electrochemical platform to detect the hybridization between two complementary single-stranded DNA molecules. Each modification step in the fabrication process was monitored by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as a redox reporter. Although, the diazonium electrografted layer displayed the expected blocking effect of the charge transfer, the next steps in the modification procedure resulted in enhanced electron transfer properties of the electrode interface. We suggest that the improvement in the charge transfer after the DNA hybridization process could be exploited as a prospective sensing feature. The morphological and structural characterization of the modified electrodes performed by scanning electron microscopy (SEM) and Raman spectroscopy, respectively, were used to validate different modification steps in the platform fabrication process.


Sign in / Sign up

Export Citation Format

Share Document