Limit on short-range resonant-charge-transfer contribution to surface-enhanced Raman scattering

1983 ◽  
Vol 28 (8) ◽  
pp. 4216-4219 ◽  
Author(s):  
S. S. Jha ◽  
J. C. Tsang
2005 ◽  
Vol 36 (6-7) ◽  
pp. 515-521 ◽  
Author(s):  
J. F. Arenas ◽  
I. López-Tocón ◽  
J. L. Castro ◽  
S. P. Centeno ◽  
M. R. López-Ramírez ◽  
...  

2017 ◽  
Vol 205 ◽  
pp. 149-171 ◽  
Author(s):  
Rebecca L. Gieseking ◽  
Mark A. Ratner ◽  
George C. Schatz

Theoretical approaches can provide insight into the mechanisms and magnitudes of electromagnetic and chemical effects in surface-enhanced Raman scattering (SERS), properties that are not readily available experimentally. Here, we model the SERS spectra of two geometries of the prototypical Ag20–pyridine cluster using a semiempirical INDO/SCI approach that allows a straightforward decomposition of the enhancement factors at each wavelength into electromagnetic and chemical terms, with proper treatment of resonant charge-transfer contributions to the enhancement. The method also enables us to determine the dependence of the enhancement on the electrochemical potential. We show that the electromagnetic enhancements for the Ag20 cluster are <10 far from resonance but can increase to 102 to 103 on resonance with plasmon excitation in the cluster. The decomposition also shows that for the systems studied here, the chemical enhancements are primarily due to resonance with excited states with significant charge-transfer character. This term is typically <10 but can be >102 at electrochemical potentials where the charge-transfer excited states are resonant with the incoming light, leading to total enhancements of >104.


2009 ◽  
Vol 113 (36) ◽  
pp. 16226-16231 ◽  
Author(s):  
Libin Yang ◽  
Xin Jiang ◽  
Weidong Ruan ◽  
Jingxiu Yang ◽  
Bing Zhao ◽  
...  

2018 ◽  
Vol 54 (17) ◽  
pp. 2134-2137 ◽  
Author(s):  
Xiaoyue Su ◽  
Hao Ma ◽  
He Wang ◽  
Xueliang Li ◽  
Xiao Xia Han ◽  
...  

For the first time SERS on organic–inorganic hybrid perovskites is explored. The enhancement mechanism is discussed according to charge transfer.


2021 ◽  
Author(s):  
Yawen Liu ◽  
Hao Ma ◽  
Xiao Xia Han ◽  
Bing Zhao

SERS on metal–semiconductor heterostructures including their building blocks, enhancement mechanisms and applications was reviewed. The synergistic contribution of plasmons and charge transfer is highlighted.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 983 ◽  
Author(s):  
Peng Ji ◽  
Zhu Mao ◽  
Zhe Wang ◽  
Xiangxin Xue ◽  
Yu Zhang ◽  
...  

In this study, ZrO2 and Zn–ZrO2 nanoparticles (NPs) with a series of Zn ion doping amounts were synthesized by the sol-gel process and utilized as substrates for surface-enhanced Raman scattering (SERS). After absorbing the probing molecule 4–mercaptobenzoic acid, the SERS signal intensities of Zn–ZrO2 NPs were all greater than that of the pure ZrO2. The 1% Zn doping concentration ZrO2 NPs exhibited the highest SERS enhancement, with an enhancement factor (EF) value of up to 104. X-ray diffraction, X-ray photoelectron spectroscopy, Ultraviolet (UV) photoelectron spectrometer, UV–vis spectroscopy, Transmission Electron Microscope (TEM), and Raman spectroscopy were used to characterize the properties of Zn–ZrO2 NPs and explore the mechanisms behind the SERS phenomenon. The charge transfer (CT) process is considered to be responsible for the SERS performance of 4–MBA adsorbed on Zn–ZrO2. The results of this study demonstrate that an appropriate doping ratio of Zn ions can promote the charge transfer process between ZrO2 NPs and probe molecules and significantly improve the SERS properties of ZrO2 substrates.


Sign in / Sign up

Export Citation Format

Share Document