scholarly journals Dark compact objects in massive tensor-multi-scalar theories of gravity

2019 ◽  
Vol 99 (8) ◽  
Author(s):  
Stoytcho S. Yazadjiev ◽  
Daniela D. Doneva
2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Victor I. Danchev ◽  
Daniela D. Doneva ◽  
Stoytcho S. Yazadjiev

AbstractIn the modern era of abundant X-ray detections and the increasing momentum of gravitational waves astronomy, tests of general relativity in strong field regime become increasingly feasible and their importance for probing gravity cannot be understated. To this end, we study the characteristics of slowly rotating topological neutron stars in the tensor-multi-scalar theories of gravity following the static study of this new type of compact objects by two of the authors. We explore the moment of inertia and verify that universal relations known from general relativity hold for this new class of compact objects. Furthermore, we study the properties of their innermost stable circular orbits and the epicyclic frequencies due to the latter’s hinted link to observational quantities such as quasi-periodic X-ray spectrum features.


2020 ◽  
Vol 29 (13) ◽  
pp. 2030008 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Einstein’s General Relativity (GR) is possibly one of the greatest intellectual achievements ever conceived by the human mind. In fact, over the last century, GR has proven to be an extremely successful theory, with a well established experimental footing, at least for weak gravitational fields. Its predictions range from the existence of black holes and gravitational radiation (now confirmed) to the cosmological models. Indeed, a central theme in modern Cosmology is the perplexing fact that the Universe is undergoing an accelerating expansion, which represents a new imbalance in the governing gravitational equations. The cause of the late-time cosmic acceleration remains an open and tantalizing question, and has forced theorists and experimentalists to question whether GR is the correct relativistic theory of gravitation. This has spurred much research in modified theories of gravity, where extensions of the Hilbert–Einstein action describe the gravitational field, in particular, [Formula: see text] gravity, where [Formula: see text] is the curvature scalar. In this review, we perform a detailed theoretical and phenomenological analysis of specific modified theories of gravity and investigate their astrophysical and cosmological applications. We present essentially two largely explored extensions of [Formula: see text] gravity, namely: (i) the hybrid metric-Palatini theory; (ii) and modified gravity with curvature-matter couplings. Relative to the former, it has been established that both metric and Palatini versions of [Formula: see text] gravity possess interesting features but also manifest severe drawbacks. A hybrid combination, containing elements from both of these formalisms, turns out to be very successful in accounting for the observed phenomenology and avoids some drawbacks of the original approaches. Relative to the curvature-matter coupling theories, these offer interesting extensions of [Formula: see text] gravity, where the explicit nonminimal couplings between an arbitrary function of the scalar curvature [Formula: see text] and the Lagrangian density of matter, induces a nonvanishing covariant derivative of the energy-momentum tensor, which implies nongeodesic motion and consequently leads to the appearance of an extra force. We extensively explore both theories in a plethora of applications, namely, the weak-field limit, galactic and extragalactic dynamics, cosmology, stellar-type compact objects, irreversible matter creation processes and the quantum cosmology of a specific curvature-matter coupling theory.


2020 ◽  
Vol 495 (1) ◽  
pp. L56-L60
Author(s):  
Niccolò Bucciantini ◽  
Jacopo Soldateschi

ABSTRACT The Fe Kα fluorescent line at 6.4 keV is a powerful probe of the space–time metric in the vicinity of accreting compact objects. We investigated here how some alternative theories of gravity, namely scalar tensor theories, that invoke the presence of a non-minimally coupled scalar field and predict the existence of strongly scalarized neutron stars (NSs), change the expected line shape with respect to General Relativity. By taking into account both deviations from the general relativistic orbital dynamics of the accreting disc, where the Fe line originates, and the changes in the light propagation around the NS, we computed line shapes for various inclinations of the disc with respect to the observer. We found that both the intensity of the low-energy tails and the position of the high-energy edge of the line change. Moreover, we verified that even if those changes are in general of the order of a few percent, they are potentially observable with the next generation of X-ray satellites.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542023 ◽  
Author(s):  
Caio F. B. Macedo ◽  
Luís C. B. Crispino ◽  
Vitor Cardoso ◽  
Hirotada Okawa ◽  
Paolo Pani

Gravitational compact astrophysical objects are excellent laboratories to test the strong field regime of theories of gravity. Among these compact objects, lies the ultracompact class: stellar structures that possess a light ring (circular null geodesic). Such ultracompact stars were presented in literature in the earlier solutions of general relativity, and some are claimed to be good candidates to the supermassive objects present at the center of galaxies. In this paper, we present evidences for the claim that compact objects with a light ring should be black holes, based on the existence of long-lived modes obtained through a first-order perturbation theory. These first-order long-lived modes can source nonlinear terms which could turn the star unstable. We show, in particular, a comparison between modes computed through an exact direct integration and through the WKB approximation. Moreover, we present the time evolution of wavepackets for different field configurations. We conjecture some possible outcomes of the nonlinear instability. The discussion presented in this work complements our previous paper [Phys. Rev. D90 (2014) 044069].


Sign in / Sign up

Export Citation Format

Share Document