scholarly journals Multifractal behavior of linear polymers in disordered media

2000 ◽  
Vol 61 (6) ◽  
pp. 6858-6865 ◽  
Author(s):  
Anke Ordemann ◽  
Markus Porto ◽  
H. Eduardo Roman ◽  
Shlomo Havlin ◽  
Armin Bunde
1989 ◽  
Vol 50 (6) ◽  
pp. 599-608 ◽  
Author(s):  
V.B. Priezzhev ◽  
S.A. Terletsky

1979 ◽  
Author(s):  
Jan Hermans

Measurements of light scattering have given much information about formation and properties of fibrin. These studies have determined mass-length ratio of linear polymers (protofibrils) and of fibers, kinetics of polymerization and of lateral association and volume-mass ratio of thick fibers. This ratio is 5 to 1. On the one hand, this high value suggests that the fiber contains channels that allow the diffusion of enzymes such as Factor XHIa and plasmin; on the other hand, the high value appears paradoxical for a stiff fiber made up of elongated units (fibrin monomers) arranged in parallel. Such a high fiber volume is a property of only a small set out of many high-symmetry models of fibrin, which may be constructed from overlapping three-domain monomers which are arranged into strands, are aligned nearly parallel to the fiber axis and make adequate longitudinal and lateral contacts. These models contain helical protofibrils related to each other by rotation axes parallel to the fiber axis. The protofibrils may contain 2, 3 or 4 monomers per helical turn and there are four possible symmetries. A large specific volume is achieved if the ends of each monomer are slightly displaced from the protofibril axis, either by a shift or by a tilt of the monomer. The fiber containing tilted monomers is more highly interconnected; the two ends of a tilted monomer form lateral contacts with different adjacent protofibrils, whereas the two ends of a non-tilted monomer contact the same adjacent protofibril(s).


2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


Author(s):  
Sauro Succi

The study of transport phenomena in disordered media is a subject of wide interdisciplinary concern, with many applications in fluid mechanics, condensed matter, life and environmental sciences as well. Flows through grossly irregular (porous) media is a specific fluid mechanical application of great practical value in applied science and engineering. It is arguably also one of the applications of choice of the LBE methods. The dual field–particle character of LBE shines brightly here: the particle-like nature of LBE (populations move along straight particle trajectories) permits a transparent treatment of grossly irregular geometries in terms of elementary mechanical events, such as mirror and bounce-back reflections. These assets were quickly recognized by researchers in the field, and still make of LBE (and eventually LGCA) an excellent numerical tool for flows in porous media, as it shall be discussed in this Chapter.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Dominic J. Skinner ◽  
Boya Song ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Knut Drescher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document