Novel Target Designs to Mitigate Hydrodynamic Instabilities Growth in Inertial Confinement Fusion

2021 ◽  
Vol 126 (18) ◽  
Author(s):  
Xiumei Qiao ◽  
Ke Lan
2000 ◽  
Vol 7 (12) ◽  
pp. 5118-5139 ◽  
Author(s):  
V. N. Goncharov ◽  
P. McKenty ◽  
S. Skupsky ◽  
R. Betti ◽  
R. L. McCrory ◽  
...  

2000 ◽  
Vol 138 ◽  
pp. 730-731
Author(s):  
Susumu Kato ◽  
Osamu Tatebe ◽  
Ryuichi Ishizaki ◽  
Isao Matsushima ◽  
Eiichi Takahashi ◽  
...  

2018 ◽  
Vol 25 (5) ◽  
pp. 054505 ◽  
Author(s):  
A. G. MacPhee ◽  
V. A. Smalyuk ◽  
O. L. Landen ◽  
C. R. Weber ◽  
H. F. Robey ◽  
...  

1999 ◽  
Vol 17 (3) ◽  
pp. 465-475 ◽  
Author(s):  
D. ORON ◽  
O. SADOT ◽  
Y. SREBRO ◽  
A. RIKANATI ◽  
Y. YEDVAB ◽  
...  

Hydrodynamic instabilities, such as the Rayleigh–Taylor and Richtmyer–Meshkov instabilities, play a central role when trying to achieve net thermonuclear fusion energy via the method of inertial confinement fusion (ICF). The development of hydrodynamic instabilities on both sides of the compressed shell may cause shell breakup and ignition failure. A newly developed statistical mechanics model describing the evolution of the turbulent mixing zone from an initial random perturbation is presented. The model will be shown to compare very well both with full numerical simulations and with experiments, performed using high power laser systems, and using shock tubes. Applying the model to typical ICF implosion conditions, an estimation of the maximum allowed target, in-flight aspect ratio as a function of equivalent surface roughness, will be derived.


2013 ◽  
Vol 44 (1) ◽  
pp. 1-23 ◽  
Author(s):  
LiFeng WANG ◽  
ShaoEn JIANG ◽  
YongSheng LI ◽  
Chuang XUE ◽  
XiaoWen XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document